914 resultados para Arabidopsis genome


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative trait loci analysis of natural Arabidopsis thaliana accessions is increasingly exploited for gene isolation. However, to date this has mostly revealed deleterious mutations. Among them, a loss-of-function allele identified the root growth regulator BREVIS RADIX (BRX). Here we present evidence that BRX and the paralogous BRX-LIKE (BRXL) genes are under selective constraint in monocotyledons as well as dicotyledons. Unexpectedly, however, whereas none of the Arabidopsis orthologs except AtBRXL1 could complement brx null mutants when expressed constitutively, nearly all monocotyledon BRXLs tested could. Thus, BRXL proteins seem to be more diversified in dicotyledons than in monocotyledons. This functional diversification was correlated with accelerated rates of sequence divergence in the N-terminal regions. Population genetic analyses of 30 haplotypes are suggestive of an adaptive role of AtBRX and AtBRXL1. In two accessions, Lc-0 and Lov-5, seven amino acids are deleted in the variable region between the highly conserved C-terminal, so-called BRX domains. Genotyping of 42 additional accessions also found this deletion in Kz-1, Pu2-7, and Ws-0. In segregating recombinant inbred lines, the Lc-0 allele (AtBRX(Lc-0)) conferred significantly enhanced root growth. Moreover, when constitutively expressed in the same regulatory context, AtBRX(Lc-0) complemented brx mutants more efficiently than an allele without deletion. The same was observed for AtBRXL1, which compared with AtBRX carries a 13 amino acid deletion that encompasses the deletion found in AtBRX(Lc-0). Thus, the AtBRX(Lc-0) allele seems to contribute to natural variation in root growth vigor and provides a rare example of an experimentally confirmed, hyperactive allelic variant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given that retroposed copies of genes are presumed to lack the regulatory elements required for their expression, retroposition has long been considered a mechanism without functional relevance. However, through an in silico assay for transcriptional activity, we identify here >1,000 transcribed retrocopies in the human genome, of which at least approximately 120 have evolved into bona fide genes. Among these, approximately 50 retrogenes have evolved functions in testes, more than half of which were recruited as functional autosomal counterparts of X-linked genes during spermatogenesis. Generally, retrogenes emerge "out of the testis," because they are often initially transcribed in testis and later evolve stronger and sometimes more diverse spatial expression patterns. We find a significant excess of transcribed retrocopies close to other genes or within introns, suggesting that retrocopies can exploit the regulatory elements and/or open chromatin of neighboring genes to become transcribed. In direct support of this hypothesis, we identify 36 retrocopy-host gene fusions, including primate-specific chimeric genes. Strikingly, 27 intergenic retrogenes have acquired untranslated exons de novo during evolution to achieve high expression levels. Notably, our screen for highly transcribed retrocopies also uncovered a retrogene linked to a human recessive disorder, gelatinous drop-like corneal dystrophy, a form of blindness. These functional implications for retroposition notwithstanding, we find that the insertion of retrocopies into genes is generally deleterious, because it may interfere with the transcription of host genes. Our results demonstrate that natural selection has been fundamental in shaping the retrocopy repertoire of the human genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RÉSUMÉ: Le génome de toute cellule est susceptible d'être attaqué par des agents endogènes et exogènes. Afin de préserver l'intégrité génomique, les cellules ont développé des multitudes de mécanismes. La réplication de l'ADN, une étape importante durant le cycle cellulaire, constitue un stress et présente un danger important pour l'intégrité du génome. L'anémie de Fanconi est une maladie héréditaire rare dont les protéines impliquées semblent jouer un rôle crucial dans la réponse au stress réplicatif. La maladie est associée à une instabilité chromosomique ainsi qu'à une forte probabilité de développer des cancers. Les cellules des patients souffrant de l'anémie de Fanconi sont sensibles à des agents interférant avec la réplication de l'ADN, et plus particulièrement àdes agents qui fient les deux brins d'ADN d'une manière covalente. L'anémie de Fanconi est une maladie génétiquement hétérogène. Treize protéines ont pu être identifiées. Elles semblent figurer dans une même voie de signalisation qui est aussi connue sous le nom de « FA/BRCA pathway », car un des gènes est identique au gène BRCA2 (breast cancer susceptibility gene 2). Huit protéines forment un complexe nucléaire dont l'intégrité est nécessaire à la monoubiquitination de deux autres protéines, FANCD2 et FANCI, en réponse à un stress réplicatif. A ce jour, la fonction moléculaire des protéines du « FA/BRCA pathway »reste encore mal décrite. Au début de mon travail de thèse, nous avons donc décidé de purifier les protéines du complexe nucléaire et d'étudier leurs propriétés biochimiques. Nous avons tout d'abord étudié les cinq protéines connues à l'époque qui sont FANCA, FANCC, FANCE, FANCF et FANCG. Par la suite, nous avons étendu notre étude à des protéines découvertes plus récemment, FANCL, FANCM et FAAP24, en concentrant finalement notre travail sur la caractérisation de FANCM. FANCM, contrairement aux autres protéines du complexe, est constituée de deux domaines conservés suggérant un rôle important dans le métabolisme de l'ADN. Il s'agit d'un domaine « DEAH box hélicase »situé dans la partie N-terminale et d'un domaine « ERCC4 nuclease »situé dans la partie C-terminale de la protéine. Dans cette étude, nous avons purifié avec succès la protéine FANCM entière à partir d'un système hétérologue. Nous montrons que FANCM s'attache de manière spécifique à des jonctions de Holliday et des fourches de réplication. De plus, nous démontrons que FANCM peut déplacer le point de jonction de ces structures via son domaine hélicase de manière dépendante de l'ATP. FANCM est aussi capable de dissocier de grands intermédiaires de la recombinaison, via la migration de jonctions de Holliday à travers une région d'homologie de 2.6 kb. Tous ces résultats suggèrent que FANCM peut s'attacher spécifiquement à des fourches de réplication et à des jonctions de Holliday in vitro et que son domaine hélicase est associé à une activité migratoire efficace. Nous pensons que FANCM peut avoir un rôle direct sur les intermédiaires de réplication. Ceci est en accord avec l'idée que les protéines de l'anémie de Fanconi coordonnent la réparation de l'ADN au niveau des fourches de réplication arrêtées. Nos résultats donnent une première indication quant au rôle de FANCM dans la cellule et peuvent contribuer à élucider la fonction de cette voie de signalisation peu comprise jusqu'à présent. SUMMARY: The genome of every cell is subject to a constant offence by endogenous and exogenous agents. Not surprisingly; cells have evolved a multitude of mechanisms which aim at preserving genomic integrity. A key step during the life cycle of a cell, DNA replication itself, constitutes a special danger to the integrity of the genome. The proteins defective in the rare hereditary disease Fanconi anemia (FA) are suspected to play a crucial role in the cellular response to DNA replication stress. The disease is associated with chromosomal instability and pronounced cancer susceptibility. Cells from Fanconi anemia patients are sensitive to a variety of agents which interfere with DNA replication, DNA interstrand cross-linking agents being particularly threatening to their survival. Fanconi anemia is a genetically heterogeneous disease with 13 different proteins identified, which seem to work together in a common pathway. Since one of the FA genes is identical to the breast cancer susceptibility gene BRCA2, it is also referred to as the FA/BRCA pathway. Eight proteins form a nuclear complex, whose integriry is required for the monoubiquitination of two other FA proteins, FANCD2 and FANCI, in response to DNA replication stress. Despite intensive research, the function of the FA/BRCA pathway at a molecular level has remained largely elusive so far. At the beginning of my thesis, we therefore decided to purify the proteins of the FA core complex and to investigate their biochemical properties. We started with the five proteins which were known at that time, FANCA, FANCC, FANCE, FANCF, and FACG. Later on, we extended our studies to the newly discovered proteins FANCL, FANCM, and FAAP24, and eventually focused our work on the characterisation of FANCM. In contrast to the other core complex proteins, FANCM contains two conserved domains, which point to a role in DNA metabolism: an N-terminal DEAH box helicase domain and a C-terminal ERCC4 nuclease domain. In this study, we have successfully purified full-length FANCM from a recombinant source. We show that purified FANCM binds to branched DNA molecules, such as Holliday junctions and replication forks, with high specificity and affinity. In addition, we demonstrate that FANCM can translocate the junction point of branched DNA molecules due to its helicase domain in an ATPase-dependent manner. FANCM can even dissociate large recombination intermediates, via branch migration of Holliday junctions through a 2.6 kb region of homology. Taken together, our data suggest that FANCM can specifically bind to replication forks and Holliday junctions in vitro, and that its DEAH box helicase domain is associated with a potent branch migration activity. We propose that FANCM might have a direct role in the processing of DNA replication intermediates. This is consistent with the current view that FA proteins coordinate DNA repair at stalled replication forks. Our findings provide a first hint as to the context in which FANCM might play a role in the cell. We are optimistic that they might be key to further elucidate the function of a pathway which is far from being understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Efavirenz and abacavir are components of recommended first-line regimens for HIV-1 infection. We used genome-wide genotyping and clinical data to explore genetic associations with virologic failure among patients randomized to efavirenz-containing or abacavir-containing regimens in AIDS Clinical Trials Group (ACTG) protocols. PARTICIPANTS AND METHODS: Virologic response and genome-wide genotype data were available from treatment-naive patients randomized to efavirenz-containing (n=1596) or abacavir-containing (n=786) regimens in ACTG protocols 384, A5142, A5095, and A5202. RESULTS: Meta-analysis of association results across race/ethnic groups showed no genome-wide significant associations (P<5×10) with virologic response for either efavirenz or abacavir. Our sample size provided 80% power to detect a genotype relative risk of 1.8 for efavirenz and 2.4 for abacavir. Analyses focused on CYP2B genotypes that define the lowest plasma efavirenz exposure stratum did not show associations nor did analysis limited to gene sets predicted to be relevant to efavirenz and abacavir disposition. CONCLUSION: No single polymorphism is associated strongly with virologic failure with efavirenz-containing or abacavir-containing regimens. Analyses to better consider context, and that minimize confounding by nongenetic factors, may show associations not apparent here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searching for matches between large collections of short (14-30 nucleotides) words and sequence databases comprising full genomes or transcriptomes is a common task in biological sequence analysis. We investigated the performance of simple indexing strategies for handling such tasks and developed two programs, fetchGWI and tagger, that index either the database or the query set. Either strategy outperforms megablast for searches with more than 10,000 probes. FetchGWI is shown to be a versatile tool for rapidly searching multiple genomes, whose performance is limited in most cases by the speed of access to the filesystem. We have made publicly available a Web interface for searching the human, mouse, and several other genomes and transcriptomes with oligonucleotide queries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic clones containing the Xenopus laevis vitellogenin gene B1 have been isolated from DNA libraries and characterized by heteroduplex mapping in the electron microscope, restriction endonuclease analysis, and in vitro transcription in a HeLa whole-cell extract. Sequences from the 3'-flanking region of the previously isolated A1 vitellogenin gene were found in the 5'-flanking region of this B1 gene. Thus, the two genes are linked, with 15.5 kilobase pairs of DNA between them. Their length is about 22 kilobase pairs (A1 gene) and 16.5 kilobase pairs (B1 gene) and they have the following arrangement: 5'-A1 gene-spacer-B1 gene-3'. The analysis of heteroduplexes formed between the two genes revealed several regions of homology. Both genes are in the same orientation and, therefore, are transcribed from the same DNA strand. The possible events by which the vitellogenin gene family arose in Xenopus laevis are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect attack triggers changes in transcript level in plants that are mediated predominantly by jasmonic acid (JA). The implication of ethylene (ET), salicylic acid (SA), and other signals in this response is less understood and was monitored with a microarray containing insect- and defense-regulated genes. Arabidopsis thaliana mutants coi1-1, ein2-1, and sid2-1 impaired in JA, ET, and SA signaling pathways were challenged with the specialist small cabbage white (Pieris rapae) and the generalist Egyptian cotton worm (Spodoptera littoralis). JA was shown to be a major signal controlling the upregulation of defense genes in response to either insect but was found to suppress changes in transcript level only in response to P. rapae. Larval growth was affected by the JA-dependent defenses, but S. littoralis gained much more weight on coi1-1 than P. rapae. ET and SA mutants had an altered transcript profile after S. littoralis herbivory but not after P. rapae herbivory. In contrast, both insects yielded similar transcript signatures in the abscisic acid (ABA)-biosynthetic mutants aba2-1 and aba3-1, and ABA controlled transcript levels both negatively and positively in insect-attacked plants. In accordance with the transcript signature, S. littoralis larvae performed better on aba2-1 mutants. This study reveals a new role for ABA in defense against insects in Arabidopsis and identifies some components important for plant resistance to herbivory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon-exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon-exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ~11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formative, also called asymmetric, cell divisions produce daughter cells with different identities. Like other divisions, formative divisions rely first of all on the cell cycle machinery with centrally acting cyclin-dependent kinases (CDKs) and their cyclin partners to control progression through the cell cycle. However, it is still largely obscure how developmental cues are translated at the cellular level to promote asymmetric divisions. Here, we show that formative divisions in the shoot and root of the flowering plant Arabidopsis thaliana are controlled by a common mechanism that relies on the activity level of the Cdk1 homolog CDKA;1, with medium levels being sufficient for symmetric divisions but high levels being required for formative divisions. We reveal that the function of CDKA;1 in asymmetric cell divisions operates through a transcriptional regulation system that is mediated by the Arabidopsis Retinoblastoma homolog RBR1. RBR1 regulates not only cell cycle genes, but also, independent of the cell cycle transcription factor E2F, genes required for formative divisions and cell fate acquisition, thus directly linking cell proliferation with differentiation. This mechanism allows the implementation of spatial information, in the form of high kinase activity, with intracellular gating of developmental decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salicylic acid (SA) plays a central role as a signalling molecule involved in plant defense against microbial attack. Genetic manipulation of SA biosynthesis may therefore help to generate plants that are more disease-resistant. By fusing the two bacterial genes pchA and pchB from Pseudomonas aeruginosa, which encode isochorismate synthase and isochorismate pyruvate-lyase, respectively, we have engineered a novel hybrid enzyme with salicylate synthase (SAS) activity. The pchB-A fusion was expressed in Arabidopsis thaliana under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter, with targeting of the gene product either to the cytosol (c-SAS plants) or to the chloroplast (p-SAS plants). In p-SAS plants, the amount of free and conjugated SA was increased more than 20-fold above wild type (WT) level, indicating that SAS is functional in Arabidopsis. P-SAS plants showed a strongly dwarfed phenotype and produced very few seeds. Dwarfism could be caused by the high SA levels per se or, perhaps more likely, by a depletion of the chorismate or isochorismate pools of the chloroplast. Targeting of SAS to the cytosol caused a slight increase in free SA and a significant threefold increase in conjugated SA, probably reflecting limited chorismate availability in this compartment. Although this modest increase in total SA content did not strongly induce the resistance marker PR-1, it resulted nevertheless in enhanced disease resistance towards a virulent isolate of Peronospora parasitica. Increased resistance of c-SAS lines was paralleled with reduced seed production. Taken together, these results illustrate that SAS is a potent tool for the manipulation of SA levels in plants.