952 resultados para Analytic number theory
Resumo:
In any environment, group dynamics would exist. How we deal with it in a competitive work environment defines who we are using transformative learning. This paper provides useful information from a number of theorists who share perspectives on the complex nature of groups.
Resumo:
In this paper, we consider the transmission of confidential information over a κ-μ fading channel in the presence of an eavesdropper who also experiences κ-μ fading. In particular, we obtain novel analytical solutions for the probability of strictly positive secrecy capacity (SPSC) and a lower bound of secure outage probability (SOPL) for independent and non-identically distributed channel coefficients without parameter constraints. We also provide a closed-form expression for the probability of SPSC when the μ parameter is assumed to take positive integer values. Monte-Carlo simulations are performed to verify the derived results. The versatility of the κ-μ fading model means that the results presented in this paper can be used to determine the probability of SPSC and SOPL for a large number of other fading scenarios, such as Rayleigh, Rice (Nakagamin), Nakagami-m, One-Sided Gaussian, and mixtures of these common fading models. In addition, due to the duality of the analysis of secrecy capacity and co-channel interference (CCI), the results presented here will have immediate applicability in the analysis of outage probability in wireless systems affected by CCI and background noise (BN). To demonstrate the efficacy of the novel formulations proposed here, we use the derived equations to provide a useful insight into the probability of SPSC and SOPL for a range of emerging wireless applications, such as cellular device-to-device, peer-to-peer, vehicle-to-vehicle, and body centric communications using data obtained from real channel measurements.
Resumo:
We present the first 3D simulation of the last minutes of oxygen shell burning in an 18 solar mass supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a 1D stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ~0.1 at collapse, and an l=2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 to 0.56 solar masses due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12--24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.
Resumo:
Queueing theory is the mathematical study of ‘queue’ or ‘waiting lines’ where an item from inventory is provided to the customer on completion of service. A typical queueing system consists of a queue and a server. Customers arrive in the system from outside and join the queue in a certain way. The server picks up customers and serves them according to certain service discipline. Customers leave the system immediately after their service is completed. For queueing systems, queue length, waiting time and busy period are of primary interest to applications. The theory permits the derivation and calculation of several performance measures including the average waiting time in the queue or the system, mean queue length, traffic intensity, the expected number waiting or receiving service, mean busy period, distribution of queue length, and the probability of encountering the system in certain states, such as empty, full, having an available server or having to wait a certain time to be served.
Resumo:
Thesis (Master's)--University of Washington, 2016-09
Resumo:
Background: Interprofessionalism, considered as collaboration between medical professionals, has gained prominence over recent decades and evidence for its impact has grown. The steadily increasing number of residents in nursing homes will challenge medical care and the interaction across professions, especially nurses and general practitioners (GPS). The nursing home visit, a key element of medical care, has been underrepresented in research. This study explores GP perspectives on interprofessional collaboration with a focus on their visits to nursing homes in order to understand their experiences and expectations. This research represents an aspect of the interprof study, which explores medical care needs as well as the perceived collaboration and communication by nursing home residents, their families, GPS and nurses. This paper focusses on GPS' views, investigating in particular their visits to nursing homes in order to understand their experiences. Methods: Open guideline-interviews covering interprofessional collaboration and the visit process were conducted with 30 GPS in three study centers and analyzed with grounded theory methodology. GPS were recruited via postal request and existing networks of the research partners. Results: Four different types of nursing home visits were found: visits on demand, periodical visits, nursing home rounds and ad-hoc-decision based visits. We identified the core category "productive performance" of home visits in nursing homes which stands for the balance of GPŚ individual efforts and rewards. GPS used different strategies to perform a productive home visit: preparing strategies, on-site strategies and investing strategies. Conclusion: We compiled a theory of GPS home visits in nursing homes in Germany. The findings will be useful for research, and scientific and management purposes to generate a deeper understanding of GP perspectives and thereby improve interprofessional collaboration to ensure a high quality of care.
Resumo:
Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.
Resumo:
Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.
Resumo:
Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems. Notes: Uwe Aickelin, Department of Computing, University of Bradford, Bradford, BD7 1DP
Resumo:
Background: The Analytic Hierarchy Process (AHP), developed by Saaty in the late 1970s, is one of the methods for multi-criteria decision making. The AHP disaggregates a complex decision problem into different hierarchical levels. The weight for each criterion and alternative are judged in pairwise comparisons and priorities are calculated by the Eigenvector method. The slowly increasing application of the AHP was the motivation for this study to explore the current state of its methodology in the healthcare context. Methods: A systematic literature review was conducted by searching the Pubmed and Web of Science databases for articles with the following keywords in their titles or abstracts: "Analytic Hierarchy Process," "Analytical Hierarchy Process," "multi-criteria decision analysis," "multiple criteria decision," "stated preference," and "pairwise comparison." In addition, we developed reporting criteria to indicate whether the authors reported important aspects and evaluated the resulting studies' reporting. Results: The systematic review resulted in 121 articles. The number of studies applying AHP has increased since 2005. Most studies were from Asia (almost 30 %), followed by the US (25.6 %). On average, the studies used 19.64 criteria throughout their hierarchical levels. Furthermore, we restricted a detailed analysis to those articles published within the last 5 years (n = 69). The mean of participants in these studies were 109, whereas we identified major differences in how the surveys were conducted. The evaluation of reporting showed that the mean of reported elements was about 6.75 out of 10. Thus, 12 out of 69 studies reported less than half of the criteria. Conclusion: The AHP has been applied inconsistently in healthcare research. A minority of studies described all the relevant aspects. Thus, the statements in this review may be biased, as they are restricted to the information available in the papers. Hence, further research is required to discover who should be interviewed and how, how inconsistent answers should be dealt with, and how the outcome and stability of the results should be presented. In addition, we need new insights to determine which target group can best handle the challenges of the AHP. © 2015 Schmidt et al.
Resumo:
Using the one-loop Coleman-Weinberg effective potential, we derive a general analytic expression for all the derivatives of the effective potential with respect to any number of classical scalar fields. The result is valid for a renormalisable theory in four dimensions with any number of scalars, fermions or gauge bosons. This result corresponds to the zero-external momentum contribution to a general one-loop diagram with N scalar external legs. We illustrate the use of the general result in two simple scalar singlet extensions of the Standard Model, to obtain the dominant contributions to the triple couplings of light scalar particles under the zero external momentum approximation.
Resumo:
Doutoramento em Economia.
Resumo:
Three-dimensional Direct Numerical Simulations combined with Particle Image Velocimetry experiments have been performed on a hemisphere-cylinder at Reynolds number 1000 and angle of attack 20◦. At these flow conditions, a pair of vortices, so-called “horn” vortices, are found to be associated with flow separation. In order to understand the highly complex phenomena associated with this fully threedimensional massively separated flow, different structural analysis techniques have been employed: Proper Orthogonal and Dynamic Mode Decompositions, POD and DMD, respectively, as well as criticalpoint theory. A single dominant frequency associated with the von Karman vortex shedding has been identified in both the experimental and the numerical results. POD and DMD modes associated with this frequency were recovered in the analysis. Flow separation was also found to be intrinsically linked to the observed modes. On the other hand, critical-point theory has been applied in order to highlight possible links of the topology patterns over the surface of the body with the computed modes. Critical points and separation lines on the body surface show in detail the presence of different flow patterns in the base flow: a three-dimensional separation bubble and two pairs of unsteady vortices systems, the horn vortices, mentioned before, and the so-called “leeward” vortices. The horn vortices emerge perpendicularly from the body surface at the separation region. On the other hand, the leeward vortices are originated downstream of the separation bubble, as a result of the boundary layer separation. The frequencies associated with these vortical structures have been quantified.
Resumo:
The purpose of this study was to explore the relationship between faculty perceptions, selected demographics, implementation of elements of transactional distance theory and online web-based course completion rates. This theory posits that the high transactional distance of online courses makes it difficult for students to complete these courses successfully; too often this is associated with low completion rates. Faculty members play an indispensable role in course design, whether online or face-to-face. They also influence course delivery format from design through implementation and ultimately to how students will experience the course. This study used transactional distance theory as the conceptual framework to examine the relationship between teaching and learning strategies used by faculty members to help students complete online courses. Faculty members’ sex, number of years teaching online at the college, and their online course completion rates were considered. A researcher-developed survey was used to collect data from 348 faculty members who teach online at two prominent colleges in the southeastern part of United States. An exploratory factor analysis resulted in six factors related to transactional distance theory. The factors accounted for slightly over 65% of the variance of transactional distance scores as measured by the survey instrument. Results provided support for Moore’s (1993) theory of transactional distance. Female faculty members scored higher in all the factors of transactional distance theory when compared to men. Faculty number of years teaching online at the college level correlated significantly with all the elements of transactional distance theory. Regression analysis was used to determine that two of the factors, instructor interface and instructor-learner interaction, accounted for 12% of the variance in student online course completion rates. In conclusion, of the six factors found, the two with the highest percentage scores were instructor interface and instructor-learner interaction. This finding, while in alignment with the literature concerning the dialogue element of transactional distance theory, brings a special interest to the importance of instructor interface as a factor. Surprisingly, based on the reviewed literature on transactional distance theory, faculty perceptions concerning learner-learner interaction was not an important factor and there was no learner-content interaction factor.