965 resultados para Algebra, Boolean.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the terminology of Logic programming, current search engines answer Sigma1 queries (formulas of the form where is a boolean combination of attributes). Such a query is determined by a particular sequence of keywords input by a user. In order to give more control to users, search engines will have to tackle more expressive queries, namely, Sigma2 queries (formulas of the form ). The purpose of the talk is to examine which directions could be explored in order to move towards more expressive languages, more powerful search engines, and the benefits that users should expect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last three years, in our Early Algebra Thinking Project, we have been studying Years 3 to 5 students’ ability to generalise in a variety of situations, namely, compensation principles in computation, the balance principle in equivalence and equations, change and inverse change rules with function machines, and pattern rules with growing patterns. In these studies, we have attempted to involve a variety of models and representations and to build students’ abilities to switch between them (in line with the theories of Dreyfus, 1991, and Duval, 1999). The results have shown the negative effect of closure on generalisation in symbolic representations, the predominance of single variance generalisation over covariant generalisation in tabular representations, and the reduced ability to readily identify commonalities and relationships in enactive and iconic representations. This chapter uses the results to explore the interrelation between generalisation and verbal and visual comprehension of context. The studies evidence the importance of understanding and communicating aspects of representational forms which allowed commonalities to be seen across or between representations. Finally the chapter explores the implications of the studies for a theory that describes a growth in integration of models and representations that leads to generalisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bana et al. proposed the relation formal indistinguishability (FIR), i.e. an equivalence between two terms built from an abstract algebra. Later Ene et al. extended it to cover active adversaries and random oracles. This notion enables a framework to verify computational indistinguishability while still offering the simplicity and formality of symbolic methods. We are in the process of making an automated tool for checking FIR between two terms. First, we extend the work by Ene et al. further, by covering ordered sorts and simplifying the way to cope with random oracles. Second, we investigate the possibility of combining algebras together, since it makes the tool scalable and able to cover a wide class of cryptographic schemes. Specially, we show that the combined algebra is still computationally sound, as long as each algebra is sound. Third, we design some proving strategies and implement the tool. Basically, the strategies allow us to find a sequence of intermediate terms, which are formally indistinguishable, between two given terms. FIR between the two given terms is then guaranteed by the transitivity of FIR. Finally, we show applications of the work, e.g. on key exchanges and encryption schemes. In the future, the tool should be extended easily to cover many schemes. This work continues previous research of ours on use of compilers to aid in automated proofs for key exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we investigate the heuristic construction of bijective s-boxes that satisfy a wide range of cryptographic criteria including algebraic complexity, high nonlinearity, low autocorrelation and have none of the known weaknesses including linear structures, fixed points or linear redundancy. We demonstrate that the power mappings can be evolved (by iterated mutation operators alone) to generate bijective s-boxes with the best known tradeoffs among the considered criteria. The s-boxes found are suitable for use directly in modern encryption algorithms.