967 resultados para Airborne
Resumo:
An accurate evaluation of the airborne particle dose-response relationship requires detailed measurements of the actual particle concentration levels that people are exposed to, in every microenvironment in which they reside. The aim of this work was to perform an exposure assessment of children in relation to two different aerosol species: ultrafine particles (UFPs) and black carbon (BC). To this purpose, personal exposure measurements, in terms of UFP and BC concentrations, were performed on 103 children aged 8-11 years (10.1 ± 1.1 years) using hand-held particle counters and aethalometers. Simultaneously, a time-activity diary and a portable GPS were used to determine the children’s daily time-activity pattern and estimate their inhaled dose of UFPs and BC. The median concentration to which the study population was exposed was found to be comparable to the high levels typically detected in urban traffic microenvironments, in terms of both particle number (2.2×104 part. cm-3) and BC (3.8 μg m-3) concentrations. Daily inhaled doses were also found to be relatively high and were equal to 3.35×1011 part. day-1 and 3.92×101 μg day-1 for UFPs and BC, respectively. Cooking and using transportation were recognized as the main activities contributing to overall daily exposure, when normalized according to their corresponding time contribution for UFPs and BC, respectively. Therefore, UFPs and BC could represent tracers of children exposure to particulate pollution from indoor cooking activities and transportation microenvironments, respectively.
Resumo:
Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness.
Resumo:
Aerosol mass spectrometers (AMS) are powerful tools in the analysis of the chemical composition of airborne particles, particularly organic aerosols which are gaining increasing attention. However, the advantages of AMS in providing on-line data can be outweighed by the difficulties involved in its use in field measurements at multiple sites. In contrast to the on-line measurement by AMS, a method which involves sample collection on filters followed by subsequent analysis by AMS could significantly broaden the scope of AMS application. We report the application of such an approach to field studies at multiple sites. An AMS was deployed at 5 urban schools to determine the sources of the organic aerosols at the schools directly. PM1 aerosols were also collected on filters at these and 20 other urban schools. The filters were extracted with water and the extract run through a nebulizer to generate the aerosols, which were analysed by an AMS. The mass spectra from the samples collected on filters at the 5 schools were found to have excellent correlations with those obtained directly by AMS, with r2 ranging from 0.89 to 0.98. Filter recoveries varied between the schools from 40 -115%, possibly indicating that this method provides qualitative rather than quantitative information. The stability of the organic aerosols on Teflon filters was demonstrated by analysing samples stored for up to two years. Application of the procedure to the remaining 20 schools showed that secondary organic aerosols were the main source of aerosols at the majority of the schools. Overall, this procedure provides accurate representation of the mass spectra of ambient organic aerosols and could facilitate rapid data acquisition at multiple sites where AMS could not be deployed for logistical reasons.
Resumo:
Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run and their airborne emissions sampled with closed-face cassettes. Dust samples were also 35 collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus and total Clostridium cluster 1 were quantified with specific qPCR protocols and emission rates were calculated. Clostridium botulinum, as well as antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gel electrophoresis (DGGE), image analysis and band sequencing. We demonstrated that emission of bacteria and moulds (Pen/Asp) can reach values as high as 1E05/min and that those emissions are not related to each other. The bag dust bacterial and mould content was also consistently across the vacuums we assessed, reaching up to 1E07 bacteria or moulds equivalent/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum were detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of moulds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.
Resumo:
Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the “baseline” range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (<95th percentile) < 13 EU/m3 and < 24,570 EU/m2, respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment, and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.
Resumo:
Generating nano-sized materials of a controlled size and chemical composition is essential for the manufacturing of materials with enhanced properties on an industrial scale, as well as for research purposes, such as toxicological studies. Among the generation methods for airborne nanoparticles (also known as aerosolisation methods), liquid-phase techniques have been widely applied due to the simplicity of their use and their high particle production rate. The use of a collison nebulizer is one such technique, in which the atomisation takes place as a result of the liquid being sucked into the air stream and injected toward the inner walls of the nebulizer reservoir via nozzles, before the solution is dispersed. Despite the above-mentioned benefits, this method also falls victim to various sources of impurities (Knight and Petrucci 2003; W. LaFranchi, Knight et al. 2003). Since these impurities can affect the characterization of the generated nanoparticles, it is crucial to understand and minimize their effect.
Resumo:
A Neutral cluster and Air Ion Spectrometer (NAIS) was used to monitor the concentration of airborne ions on 258 full days between Nov 2011 and Dec 2012 in Brisbane, Australia. The air was sampled from outside a window on the sixth floor of a building close to the city centre, approximately 100 m away from a busy freeway. The NAIS detects all ions and charged particles smaller than 42 nm. It was operated in a 4 min measurement cycle, with ion data recorded at 10 s intervals over 2 min during each cycle. The data were analysed to derive the diurnal variation of small, large and total ion concentrations in the environment. We adapt the definition of Horrak et al (2000) and classify small ions as molecular clusters smaller than 1.6 nm and large ions as charged particles larger than this size...
Resumo:
Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed. This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions. Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.
Resumo:
Exposure to ultrafine particles (UFPs) is deemed to be a major risk affecting human health. Therefore, airborne particle studies were performed in the recent years to evaluate the most critical micro-environments, as well as identifying the main UFP sources. Nonetheless, in order to properly evaluate the UFP exposure, personal monitoring is required as the only way to relate particle exposure levels to the activities performed and micro-environments visited. To this purpose, in the present work, the results of experimental analysis aimed at showing the effect of the time-activity patterns on UFP personal exposure are reported. In particular, 24 non-smoking couples (12 during winter and summer time, respectively), comprised of a man who worked full-time and a woman who was a homemaker, were analyzed using personal particle counter and GPS monitors. Each couple was investigated for a 48-h period, during which they also filled out a diary reporting the daily activities performed. Time activity patterns, particle number concentration exposure and the related dose received by the participants, in terms of particle alveolar-deposited surface area, were measured. The average exposure to particle number concentration was higher for women during both summer and winter (Summer: women 1.8×104 part. cm-3; men 9.2×103 part. cm-3; Winter: women 2.9×104 part. cm-3; men 1.3×104 part. cm-3), which was likely due to the time spent undertaking cooking activities. Staying indoors after cooking also led to higher alveolar-deposited surface area dose for both women and men during the winter time (9.12×102 and 6.33×102 mm2, respectively), when indoor ventilation was greatly reduced. The effect of cooking activities was also detected in terms of women’s dose intensity (dose per unit time), being 8.6 and 6.6 in winter and summer, respectively. On the contrary, the highest dose intensity activity for men was time spent using transportation (2.8 in both winter and summer).
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.
Resumo:
This thesis developed semi-parametric regression models for estimating the spatio-temporal distribution of outdoor airborne ultrafine particle number concentration (PNC). The models developed incorporate multivariate penalised splines and random walks and autoregressive errors in order to estimate non-linear functions of space, time and other covariates. The models were applied to data from the "Ultrafine Particles from Traffic Emissions and Child" project in Brisbane, Australia, and to longitudinal measurements of air quality in Helsinki, Finland. The spline and random walk aspects of the models reveal how the daily trend in PNC changes over the year in Helsinki and the similarities and differences in the daily and weekly trends across multiple primary schools in Brisbane. Midday peaks in PNC in Brisbane locations are attributed to new particle formation events at the Port of Brisbane and Brisbane Airport.
Resumo:
This research investigated airborne particle characteristics and their dynamics inside and around the envelope of mechanically ventilated office buildings, together with building thermal conditions and energy consumption. Based on these, a comprehensive model was developed to facilitate the optimisation of building heating, ventilation and air conditioning systems, in order to protect the health of their occupants and minimise the energy requirements of these buildings.
Resumo:
This thesis reports a comprehensive study on the physical and chemical properties of airborne particles in Brisbane, especially around schools. The sources and potential toxicity of the particles were identified, enabling an assessment of the contributing factors to children's exposure at school. The results from this thesis give a quantitative estimate of the range of airborne particles that children are exposed to at urban schools with different traffic conditions.
Resumo:
Machine vision is emerging as a viable sensing approach for mid-air collision avoidance (particularly for small to medium aircraft such as unmanned aerial vehicles). In this paper, using relative entropy rate concepts, we propose and investigate a new change detection approach that uses hidden Markov model filters to sequentially detect aircraft manoeuvres from morphologically processed image sequences. Experiments using simulated and airborne image sequences illustrate the performance of our proposed algorithm in comparison to other sequential change detection approaches applied to this application.
Resumo:
This work aims to contribute to the reliability and integrity of perceptual systems of unmanned ground vehicles (UGV). A method is proposed to evaluate the quality of sensor data prior to its use in a perception system by utilising a quality metric applied to heterogeneous sensor data such as visual and infrared camera images. The concept is illustrated specifically with sensor data that is evaluated prior to the use of the data in a standard SIFT feature extraction and matching technique. The method is then evaluated using various experimental data sets that were collected from a UGV in challenging environmental conditions, represented by the presence of airborne dust and smoke. In the first series of experiments, a motionless vehicle is observing a ’reference’ scene, then the method is extended to the case of a moving vehicle by compensating for its motion. This paper shows that it is possible to anticipate degradation of a perception algorithm by evaluating the input data prior to any actual execution of the algorithm.