973 resultados para Air Force Flight Test Center (U.S.)
Resumo:
Air Force Office of Scientific Research (90-0175); Defense Advanced Research Projects Agency (90-0083); Office of Naval Research (N00014-91-J-4100)
Resumo:
A model of pitch perception, called the Spatial Pitch Network or SPINET model, is developed and analyzed. The model neurally instantiates ideas front the spectral pitch modeling literature and joins them to basic neural network signal processing designs to simulate a broader range of perceptual pitch data than previous spectral models. The components of the model arc interpreted as peripheral mechanical and neural processing stages, which arc capable of being incorporated into a larger network architecture for separating multiple sound sources in the environment. The core of the new model transforms a spectral representation of an acoustic source into a spatial distribution of pitch strengths. The SPINET model uses a weighted "harmonic sieve" whereby the strength of activation of a given pitch depends upon a weighted sum of narrow regions around the harmonics of the nominal pitch value, and higher harmonics contribute less to a pitch than lower ones. Suitably chosen harmonic weighting functions enable computer simulations of pitch perception data involving mistuned components, shifted harmonics, and various types of continuous spectra including rippled noise. It is shown how the weighting functions produce the dominance region, how they lead to octave shifts of pitch in response to ambiguous stimuli, and how they lead to a pitch region in response to the octave-spaced Shepard tone complexes and Deutsch tritones without the use of attentional mechanisms to limit pitch choices. An on-center off-surround network in the model helps to produce noise suppression, partial masking and edge pitch. Finally, it is shown how peripheral filtering and short term energy measurements produce a model pitch estimate that is sensitive to certain component phase relationships.
Resumo:
This paper describes a self-organizing neural model for eye-hand coordination. Called the DIRECT model, it embodies a solution of the classical motor equivalence problem. Motor equivalence computations allow humans and other animals to flexibly employ an arm with more degrees of freedom than the space in which it moves to carry out spatially defined tasks under conditions that may require novel joint configurations. During a motor babbling phase, the model endogenously generates movement commands that activate the correlated visual, spatial, and motor information that are used to learn its internal coordinate transformations. After learning occurs, the model is capable of controlling reaching movements of the arm to prescribed spatial targets using many different combinations of joints. When allowed visual feedback, the model can automatically perform, without additional learning, reaches with tools of variable lengths, with clamped joints, with distortions of visual input by a prism, and with unexpected perturbations. These compensatory computations occur within a single accurate reaching movement. No corrective movements are needed. Blind reaches using internal feedback have also been simulated. The model achieves its competence by transforming visual information about target position and end effector position in 3-D space into a body-centered spatial representation of the direction in 3-D space that the end effector must move to contact the target. The spatial direction vector is adaptively transformed into a motor direction vector, which represents the joint rotations that move the end effector in the desired spatial direction from the present arm configuration. Properties of the model are compared with psychophysical data on human reaching movements, neurophysiological data on the tuning curves of neurons in the monkey motor cortex, and alternative models of movement control.
Resumo:
Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.
Resumo:
This article describes a neural network model, called the VITEWRITE model, for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a. hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The proposed controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in a given synergy is achieved. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. The separate "score" of onset times used in most prior models is hereby replaced by a self-scaling activity-released "motor program" that uses few memory resources, enables each synergy to exhibit a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless. connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data concerning band movements, such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.
Resumo:
Tese de doutoramento, Psicologia (Psicologia da Social), Universidade de Lisboa, Faculdade de Psicologia, 2015
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
The Massachusetts Institute of Technology (MIT) submits this proposal for the Enterprise Value Phase of the Lean Aerospace Initiative (LAI) in response to the October 9, 2002 Request for Proposal (RFP) F33615-02-2-5501 from the Air Force Research Laboratory (AFRL/MLKT), Wright-Patterson Air Force Base, Ohio. This proposal addresses the conduct of the LAI as set forth in the Enterprise Value Phase Concept of Operations (final draft dated 5 June 2002. The creation of this Enterprise Value Phase Concept of Operations (ConOps) was the result of extensive interaction among all stakeholders in the LAI consortium. The proposed products and research topics have been developed by the MIT LAI team based on this extended interaction with the Lean Aerospace Initiative consortium members during the concept of operations development. This proposal is in consonance with the Enterprise Value Phase vision, and mission as set forth in the concept of operations so as to meet stakeholder needs to achieve the goals and deliverables desired, prioritized to fit available funding.
Resumo:
This volume of the final report documents the technical work performed from December 1998 through December 2002 under Cooperative Agreement F33615-97-2-5153 executed between the U.S. Air Force, Air Force Research Laboratory, Materials and Manufacturing Directorate, Manufacturing Technology Division (AFRL/MLM) and the McDonnell Douglas Corporation, a wholly-owned subsidiary of The Boeing Company. The work was accomplished by The Boeing Company, Phantom Works, Huntington Beach, St. Louis, and Seattle; Ford Motor Company; Integral Inc.; Sloan School of Management in the Massachusetts Institute of Technology; Pratt & Whitney; and Central State University in Xenia, Ohio and in association with Raytheon Corporation. The LeanTEC program manager for AFRL is John Crabill of AFRL / MLMP and The Boeing Company program manager is Ed Shroyer of Boeing Phantom Works in Huntington Beach, CA. Financial performance under this contract is documented in the Financial Volume of the final report.
Resumo:
The Lean Aircraft Initiative began in the summer of 1992 as a “quick look” into the feasibility of applying manufacturing principles that had been pioneered in the automobile industry, most notably the Toyota Production System, to the U.S. defense aircraft industry. Once it was established that “lean principles” (the term coined to describe the new paradigm in automobile manufacturing) were indeed applicable to aircraft manufacturing as well, the Initiative was broadened to include other segments of the defense aerospace industry. These consisted of electronics/avionics, engines, electro-mechanical systems, missiles, and space systems manufacturers. In early 1993, a formal framework was established in which 21 defense firms and the Air Force formed a consortium to support and participate in the Initiative at M.I.T.
Resumo:
La audición es el segundo mecanismo sensorial más importante después de la visión para obtener información durante la operación de una aeronave. Les permite a los pilotos percibir, procesar identificar los sonidos del ambiente que los rodea. Así necesita oír bien tanto en vuelo como en tierra, especialmente entre 500 y 3000 Hz para la recepción del lenguaje hablado y de las señales auditivas. Objetivo: Determinar los cambios progresivos en el tiempo y las frecuencias auditivas que se afectan en las audiometrías de los pilotos militares de las fuerzas militares en los años 2009, 2010 y 2011. Material y Métodos: Se trata de un estudio longitudinal de cohorte en el cual se identificará el comportamiento de las audiometrías de la población de pilotos de las fuerzas militares de Colombia en los años 2009, 2010 y 2011. Se hará una revisión retrospectiva de dichas audiometrías. Para dicho fin se tomó la población de pilotos de fuerzas militares que fueron distribuidos en grupos de pilotos de aeronave de ala fija que corresponden a 47 pilotos y ala rotatoria que son 155. Conclusiones: Se encontró que la frecuencia mas alterada en la población total fue la de 6000 Hz, que en lo pilotos de ala fija las frecuencias más afectadas fueron las de 4000 Hz y la de 6000Hz, la frecuencia más afectada en los pilotos de ala rotatoria fueron las de 4000 Hz, 6000 Hz y 8000 Hz, con lo que se concluye que la exposición en los pilotos afecta las frecuencias altas en las audiometrías. Se observó una relación con el número de horas de vuelo y las alteraciones audiométricas encontrándose una alteración en los pilotos entre 1000 y 4000 horas de vuelo en las frecuencias de 4000 Hz, 6000 Hz y 8000 Hz y una alteración de las todas las frecuencias en aquellos pilotos con más de 5000 horas de vuelo en el año 2009, presentando posterior recuperación en los años posteriores sin poder determinar en este estudio las causas de dicha recuperación. Los pilotos de ala rotatoria presentaron un incremento sostenido en todas las frecuencias en comparación con los pilotos de ala fija.
Resumo:
We tested the hypothesis that cryptically colored eggs would suffer less predation than conspicuous eggs in the ground-nesting red-legged partridge, Alectoris rufa. We used A. rufa as a model species because it has a wide range of natural egg colors, the eggs are widely available from breeding farms, and nests are easily mimicked because they are scrapes containing no vegetation. The study was conducted in the spring of 2001 in forest and fallow fields of central Spain in Castilla La Mancha, Ciudad Real. We used 384 clutches of natural eggs that were white, white spotted, brown, or brown spotted. Within clutches, eggs were consistent in color and size; among clutches, color differences were distributed across habitats. Clutches were checked once after 2 wk of exposure. Cryptic coloration had a survival advantage that was dependent on the local suite of predators. Rodent predation was nonselective with respect to clutch color; however, avian predation was significantly higher for conspicuous clutches. In addition, there was an interaction of landscape and egg color for avian predation. In forest landscapes, the clutches with highest survival were brown spotted, whereas in fallow landscapes, brown and brown spotted clutches had higher survival than white and white potted clutches. Thus, both the predator suite and the landscape had significant effects on the value of cryptic egg coloration. Our study is relevant for conservationists and managers in charge of restocking programs in hunting areas. The release of other partridge species or their hybrids could result in hybridization with wild partridges, potentially leading to nonoptimal clutch pigmentation and reduced survival of the native species. We therefore recommend that local authorities, managers, and conservationists be cautious with the use of alien species and hybrids and release only autochthonous species of partridges within their natural ranges.