959 resultados para Aging of materials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents an assessment of the coprecipitation technique for the reliable production of high-temperature superconducting (HTS) copper-oxide powders in quantities scaled up to 1 kg. This process affords precise control of cation stoichiometry (< 4% relative), occurs rapidly (almost instantaneously) and can be suitably developed for large-scale (e.g. tonne) manufacture of HTS materials. The process is based upon a simple control of the chemistry of the cation solution and precipitation with oxalic acid. This coprecipitation method is applicable to all copper-oxides and has been demonstrated in this work using over thirty separate experiments for the following compositions: YBa2Cu3O7-δ, Y2BaCuO5 and YBa2Cu4O8. The precursor powders formed via this coprecipitation process are fine-grained (∼ 5-10 nm), chemically homogeneous at the nanometer scale and reactive, Conversion to phase-pure HTS powders can therefore occur in minutes at appropriate firing temperatures. © 1995.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quantities of Y2BaCuO5 powder greater than 500g have been manufactured by a co-precipitation process. By suitable heat treatments, the particle size of these powders can be varied from 5µm to less than 500nm. Sub-micrometer size powders may, under some conditions, have a duller green colour which is attributed to <2% unreacted material. However, after re-grinding and re-firing of this powder, high-purity powders can be achieved without significant grain growth. Inductively coupled plasma (ICP) spectroscopy is used to measure the stoichiometry of the powders and X-ray diffraction is used to determine phase purity. In both cases, the bulk composition is consistent with Y2BaCuO5 and phase purity is considered better than 95%.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thin-sectioned samples mounted on glass slides with common petrographic epoxies cannot be easily removed (for subsequent ion-milling) by standard methods such as heating or dissolution in solvents. A method for the removal of such samples using a radio frequency (RF) generated oxygen plasma has been investigated for a number of typical petrographic and ceramic thin sections. Sample integrity and thickness were critical factors that determined the etching rate of adhesive and the survivability of the sample. Several tests were performed on a variety of materials in order to estimate possible heating or oxidation damage from the plasma. Temperatures in the plasma chamber remained below 138°C and weight changes in mineral powders etched for 76 hr were less than ±4%. A crystal of optical grade calcite showed no apparent surface damage after 48 hr of etching. Any damage from the oxygen plasma is apparently confined to the surface of the sample, and is removed during the ion-milling stage of transmission electron microscopy (TEM) sample preparation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A process for making aluminosilicates of zeolite N structure comprising the steps of: (i) combining a water soluble monovalent cation, a solution of hydroxyl anions and an aluminosilicate to form a resultant mixture having a pH greater than 10 and a H.sub.2O/Al.sub.2O.sub.3 ratio in the range 30 to 220; (ii) heating the resultant mixture to a temperature of between 50.degree. C. and boiling point of the mixture for a time between 1 minute and 100 hours until a crystalline product of zeolite N structure is formed as determined by X-ray diffraction or other suitable characteristic; and (iii) separating the zeolite N product as a solid from the mixture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Characterization of the combustion products released during the burning of commonly used engineering metallic materials may aid in material selection and risk assessment for the design of oxygen systems. The characterization of combustion products in regards to size distribution and morphology gives useful information for systems addressing fire detection. Aluminum rods (3.2-mm diameter cylinders) were vertically mounted inside a combustion chamber and ignited in pressurized oxygen by resistively heating an aluminum/palladium igniter wire attached to the bottom of the test sample. This paper describes the experimental work conducted to establish the particle size distribution and morphology of the resultant combustion products collected after the burning was completed and subsequently analyzed. In general, the combustion products consisted of a re-solidified oxidized slag and many small hollow spheres of size ranging from about 500 nm to 1000 µm in diameter, surfaced with quenched dendritic and grain-like structures. The combustion products were characterized using optical and scanning electron microscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fibrous scaffolds of engineered structures can be chosen as promising porous environments when an approved criterion validates their applicability for a specific medical purpose. For such biomaterials, this paper sought to investigate various structural characteristics in order to determine whether they are appropriate descriptors. A number of poly(3-hydroxybutyrate) scaffolds were electrospun; each of which possessed a distinguished architecture when their material and processing conditions were altered. Subsequent culture of mouse fibroblast cells (L929) was carried out to evaluate the cells viability on each scaffold after their attachment for 24 h and proliferation for 48 and 72 h. The scaffolds’ porosity, pores number, pores size and distribution were quantified and none could establish a relationship with the viability results. Virtual reconstruction of the mats introduced an authentic criterion, “Scaffold Percolative Efficiency” (SPE), with which the above descriptors were addressed collectively. It was hypothesized to be able to quantify the efficacy of fibrous scaffolds by considering the integration of porosity and interconnectivity of the pores. There was a correlation of 80% as a good agreement between the SPE values and the spectrophotometer absorbance of viable cells; a viability of more than 350% in comparison to that of the controls.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amphiphilic poly(ethylene glycol)-block-pol (dimethylsiloxane)-block-poly(ethylene glycol)(PEG-block-PDMS block-PEG) triblock copolymers have been successfully prepared via hydrosilylation using discrete and polydisperse PEG of various chain lengths. Facile synthesis of discrete PEG (dPEG) is achieved via systematic tosylation and etherification of lower glycols. Amphiphilicity of the dPEG block-PDMS-block-dPEG triblock copolymer is illustrated by dynamic light scattering (DLS) and measurement of the critical micelle concentration (CMC).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Periodontitis results from the destructive inflammatory reaction of the host elicited by a bacterial biofilm adhering to the tooth surface and if left untreated, may lead to the loss of the teeth and the surrounding tissues, including the alveolar bone. Cementum is a specialized calcified tissue covering the tooth root and an essential part of the periodontium which enables the attachment of the periodontal ligament to the root and the surrounding alveolar bone. Periodontal ligament cells (PDLCs) represent a promising cell source for periodontal tissue engineering. Since cementogenesis is the critical event for the regeneration of periodontal tissues, this study examined whether inorganic stimuli derived from bioactive bredigite (Ca7MgSi4O16) bioceramics could stimulate the proliferation and cementogenic differentiation of PDLCs, and further investigated the involvement of the Wnt/β-catenin signalling pathway during this process via analysing gene/protein expression of PDLCs which interacted with bredigite extracts. Our results showed that the ionic products from bredigite powder extracts led to significantly enhanced proliferation and cementogenic differentiation, including mineralization–nodule formation, ALP activity and a series of bone/cementum-related gene/protein expression (ALP, OPN, OCN, BSP, CAP and CEMP1) of PDLCs in a concentration dependent manner. Furthermore, the addition of cardamonin, a Wnt/β-catenin signalling inhibitor, reduced the pro-cementogenesis effect of the bredigite extracts, indicating the involvement of the Wnt/β-catenin signalling pathway in the cementogenesis of PDLCs induced by bredigite extracts. The present study suggests that an entirely inorganic stimulus with a specific composition of bredigite bioceramics possesses the capacity to trigger the activation of the Wnt/β-catenin signalling pathway, leading to stimulated differentiation of PDLCs toward a cementogenic lineage. The results indicate the therapeutic potential of bredigite ceramics in periodontal tissue engineering application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Roller mills are typically used to crush sugarcane to express the juice from which sugar is manufactured. The mill rolls need to provide sufficient grip to ensure minimal sliding of the sugarcane along the roll surface. The rolls are subject to pressures up to 55 MPa from the sugarcane bagasse (as the sugarcane is called after first being crushed between a pair of rolls). The insoluble component of sugarcane includes typically 10% ash that largely originates from soil that is harvested with the cane. The sugarcane juice is acidic with pH typically between 5.0 and 5.5. As a result of ash and juice, the mill rolls are subjected to a range of abrasive and corrosive wear mechanisms. Solutions to provide grip and resist wear involve the selection of an appropriate roll shell material and compatible hard facing to provide the desired grip and wear characteristics. This paper reviews the various solutions that have been adopted for grip and durability for mill rolls and highlights the advantages and disadvantages of each method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The texture of agricultural crops changes during harvesting, post harvesting and processing stages due to different loading processes. There are different source of loading that deform agricultural crop tissues and these include impact, compression, and tension. Scanning Electron Microscope (SEM) method is a common way of analysing cellular changes of materials before and after these loading operations. This paper examines the structural changes of pumpkin peel and flesh tissues under mechanical loading. Compression and indentation tests were performed on peel and flesh samples. Samples structure were then fixed and dehydrated in order to capture the cellular changes under SEM. The results were compared with the images of normal peel and flesh tissues. The findings suggest that normal flesh tissue had bigger size cells, while the cellular arrangement of peel was smaller. Structural damage was clearly observed in tissue structure after compression and indentation. However, the damages that resulted from the flat end indenter was much more severe than that from the spherical end indenter and compression test. An integrated deformed tissue layer was observed in compressed tissue, while the indentation tests shaped a deformed area under the indenter and left the rest of the tissue unharmed. There was an obvious broken layer of cells on the walls of the hole after the flat end indentations, whereas the spherical indenter created a squashed layer all around the hole. Furthermore, the influence of loading was lower on peel samples in comparison with the flesh samples. The experiments have shown that the rate of damage on tissue under constant rate of loading is highly dependent on the shape of equipment. This fact and observed structural changes after loading underline the significance of deigning post harvesting equipments to reduce the rate of damage on agricultural crop tissues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A nanocomposite of Mn3O4 wrapped in graphene sheets (GSs) was successfully synthesized via a facile, effective, energy-saving, and scalable microwave hydrothermal technique. The morphology and microstructures of the fabricated GS–Mn3O4 nanocomposite were characterized using various techniques. The results indicate that the particle size of the Mn3O4 particles in the nanocomposite markedly decreased to nearly 20 nm, significantly smaller than that for the bare Mn3O4. Electrochemical measurements demonstrated a high specific capacity of more than 900 mA h g−1 at 40 mA g−1, and excellent cycling stability with no capacity decay can be observed up to 50 cycles. All of these properties are also interpreted by experimental studies and theoretical calculations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Strong binding of isolated carbon dioxide (CO2) on aluminium nitride (AlN) single walled nanotubes is verified using two different functionals. Two optimized configurations corresponding to physisorption and chemisorption are linked by a low energy barrier, such that the chemisorbed state is accessible and thermodynamically favored at low temperatures. In contrast, N2 is found only to form a physisorbed complex with the AlN nanotube, suggesting the potential application of aluminium nitride based materials for CO2 fixation. The effect of nanotube diameter on gas adsorption properties is also discussed. The diameter is found to have an important effect on the chemisorption of CO2, but has little effect on the physisorption of either CO2 or N2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper assesses the capacity to provide semipermeability of the synthetic layer of surface-active phospholipids created to replace the depleted surface amorphous layer of articular cartilage. The surfaces of articular cartilage specimens in normal, delipidized, and relipidized conditions following incubation in dipalmitoyl-phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine components of the joint lipid mixture were characterized nanoscopically with the atomic force microscope and also imaged as deuterium oxide (D2O) diffused transiently through these surfaces in a magnetic resonance imaging enclosure. The MR images were then used to determine the apparent diffusion coefficients in a purpose-built MATLAB®-based algorithm. Our results revealed that all surfaces were permeable to D2O, but that there was a significant difference in the semipermeability of the surfaces under the different conditions, relative to the apparent diffusion coefficients. Based on the results and observations, it can be concluded that the synthetic lipid that is deposited to replace the depleted SAL of articular cartilage is capable of inducing some level of semipermeability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (~ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ~ 300 % in 1h and ~ 40 % degradation during 30 d study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix.