943 resultados para Acartia clausi, c2, length
Resumo:
The SESAME dataset contains mesozooplankton data collected during April 2008 in the North-Western part of Black Sea (between 44°46' N and 42°29'N latitude and 28°64'E and 30°59'E longitude). Mesozooplankton sampling was undertaken at 9 stations where samples were collected using a Hensen net in the 0-10, 10-25, 25-50, 50-100, 100-150, 150-200 m layer. The dataset includes 29 samples analysed for mesozooplankton species composition and abundance. The entire sample or an aliquot (1/2 to 1/4) was analyzed under the binocular microscope. Calculations of zooplankton abundance are made by the following formulae, in accordance with the Report of the third ICES/HELCOM workshop on quality assurance of Biological measurements Warnemünde, Germany, 1996. M - number of counted specimens (ind.), Vf - volume of filtrated water (m³), and K - counted part of sample. (http://www2008.io-warnemuende.de/research/helcom_zp/documents/qa_zp_part.pdf)
Resumo:
Samples of zooplankton were collected in the Barents Sea during cruise 11 of R/V Akademik Sergey Vavilov in September-October 1997. Three different sampling methods were used: 30 l bottle, Judey net, and BR net. More than 40 species of zooplankton were revealed. The greatest species diversity occurred in zones of junction of waters of different origin. Within the 100 m upper water layer zooplankton biomass was rather high: aver. 32 g/m**2. The highest biomass was observed in the northeastern part of the region under study and over the shelf of the Russkaya Gavan' Bay. The lowest biomass occurred in the southern part and in the region of the Gusinaya Banka. The average autumn value of zooplankton biomass in the 100 m upper layer (321 mg/m**3) slightly exceeded the multiannual average for the summer period (200 mg/m**3)
Resumo:
The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.