934 resultados para ATP-diphosphohydrolase
Resumo:
La majorité des organelles d'une cellule adaptent leur nombre et leur taille pendant les processus de division cellulaire, de trafic vésiculaire ou suite à des changements environnementaux par des processus de fusion et de fragmentation membranaires. Ceci est valable notamment pour le golgi, les mitochondries, les péroxisomes et les lysosomes. La vacuole est le compartiment terminal de la voie endocytaire dans la levure Saccharomyces cerevisiae\ elle correspond aux lysosomes des cellules mammifères. Suite à un choc hyperosmotique, la vacuole se fragmente en plusieurs petites vésicules. Durant ce projet, cette fragmentation a été étudiée en utilisant la technique de microscopie confocale in vivo. J'ai observé que la division de la vacuole se produit d'une façon asymétrique. La première minute après le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase est dépendante de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que d'un gradient transmembranaire de protons. Pendant les 10-15 minutes qui suivent, des vésicules se détachent dans les régions où l'on observe les invaginations pendant la phase initiale. Cette deuxième phase qui mène à la fission des nouveaux compartiments vacuolaires dépend de la production du lipide PI(3,5)P2 par la protéine Fab1. J'ai établi la suite des événements du processus de fragmentation des vacuoles et propose la possibilité d'un rôle régulateur de la protéine kinase cycline-dépendante Pho85.¦En outre, j'ai tenté d'éclaircir plus spécifiquement le rôle de Vps1 pendant la fusion et fission des vacuoles. J'ai trouvé que tous les deux processus sont dépendants de l'activité GTPase de cette protéine. De plus l'association avec la membrane vacuolaire paraît régulée par le cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'un autre facteur protéinique, ce qui permet de conclure à une interaction directe avec des lipides de la membrane. Cette interaction est au moins partiellement effectuée par le domaine GTPase, ce qui est une nouveauté pour un membre de cette famille de protéines. Une deuxième partie de Vps1, nommée insert B, est impliquée dans la liaison à la vacuole, soit par interaction directe avec la membrane, soit par régulation du domaine GTPase. En assumant que Vps1 détienne deux régions capables de liaison aux membranes, je conclus qu'elle pourrait fonctionner comme facteur de « tethering » lors de la fusion des vacuoles.¦-¦La cellule contient plusieurs sous-unités, appelées organelles, possédant chacune une fonction spécifique. Dépendant des processus qui s'y déroulent à l'intérieur, un environnement chimique spécifique est requis. Pour maintenir ces différentes conditions, les organelles sont séparées par des membranes. Lors de la division cellulaire ou en adaptation à des changements de milieu, les organelles doivent être capables de modifier leur morphologie. Cette adaptation a souvent lieu par fusion ou division des organelles. Le même principe est valable pour la vacuole dans la levure. La vacuole est une organelle qui sert principalement au stockage des aliments et à la dégradation des différents composants cellulaires. Alors que la fusion des vacuoles est un processus déjà bien décrit, la fragmentation des vacuoles a jusqu'ici été peu étudiée. Elle peut être induit par un choc osmotique: à cause de la concentration de sel élevé dans le milieu, le cytosol de la levure perd de l'eau. Par un flux d'eau de la vacuole au cytosol, la cellule est capable d'équilibrer celui-ci. Quand la vacuole perd du volume, elle doit réadapter le rapport entre surface membranaire et volume, ce qui se fait efficacement par une fragmentation d'une grande vacuole en plusieurs petites vésicules. Comment ce processus se déroule d'un point de vue morphologique n'a pas été décrit jusqu'à présent. En analysant la fragmentation vacuolaire par microscopie, j'ai trouvé que celle-ci se déroule en deux phases. Pendant la première minute suivant le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase dépend de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que du gradient transmembranaire de protons. Ce gradient s'établit par une pompe membranaire, la V-ATPase, qui transporte des protons dans la vacuole en utilisant l'énergie libérée par hydrolyse d'ATP. Après cette phase initiale, la formation de nouvelles vésicules vacuolaires dépend de la synthèse du lipide PI(3,5)P2.¦Dans la deuxième partie de l'étude, j'ai tenté de décrire comment Vps1 lie la membrane pour effectuer un remodelage de la vacuole. Vps1 est nécessaire pour la fusion et la fragmentation des vacuoles. J'ai découvert que tous les deux processus dépendent de sa capacité d'hydrolyser du GTP. Ainsi l'association avec la membrane est couplée au cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'une autre protéine, et interagit donc très probablement avec les lipides de la membrane. Deux parties différentes de la protéine sont impliquées dans la liaison, dont une, inattendue, le domaine GTPase.¦-¦Numerous organelles undergo membrane fission and fusion events during cell division, vesicular traffic, or in response to changes in environmental conditions. Examples include Golgi (Acharya et al., 1998) mitochondria (Bleazard et al., 1999) peroxisomes (Kuravi et al., 2006) and lysosomes (Ward et al., 1997). In the yeast Saccharomyces cerevisiae the vacuole is the terminal component of the endocytic pathway and corresponds to lysosomes in mammalian cells. Yeast vacuoles fragment into multiple small vesicles in response to a hypertonic shock. This rapid and homogeneous reaction can serve as a model to study the requirements of the fragmentation process. Here, I investigated osmotically induced fragmentation by time-lapse microscopy. I observe that the small fragmentation products originate directly from the large central vacuole by asymmetric scission rather than by consecutive equal divisions and that fragmentation occurs in two distinct phases. During the first minute, vacuoles shrink and generate deep invaginations, leaving behind tubular structures. This phase requires the dynamin-like GTPase Vps1 and the vacuolar proton gradient. In the subsequent 10-15 minutes, vesicles pinch off from the tubular structures in a polarized fashion, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol- 3,5-bisphosphate by the Fab1 complex. I suggest a possible regulation of vacuole fragmentation by the CDK Pho85. Based on my microscopy study I established a sequential involvement of the different fission factors.¦In addition to the morphological description of vacuole fragmentation I more specifically aimed to shed some light on the role of Vps1 in vacuole fragmentation and fusion. I find that both functions are dependent on the GTPase activity of the protein and that also the membrane association of the dynamin-like protein is coupled to the GTPase cycle. I found that Vps1 has the capacity for direct lipid binding on the vacuole and that this lipid binding is at least partially mediated through residues in the GTPase domain, a complete novelty for a dynamin family member. A second stretch located in the region of insert Β has also membrane-binding activity or regulates the association with the vacuole through the GTPase domain. Under the assumption of two membrane-binding regions I speculate on Vps1 as a possible tethering factor for vacuole fusion.
Resumo:
Aim and purpose: Moderate alcohol consumption has been associated with lower risk of diabetes mellitus, but few data exist on the metabolic syndrome and on the metabolic impact of heavy drinking. The aim of our study was to investigate the complex relationship between alcohol and the metabolic syndrome and diabetes mellitus in a population-based study in Switzerland with high mean alcohol consumption. Design and methods: In 6188 adults aged 35 to 75, alcohol consumption was categorized as 0, 1-6, 7-13, 14-20, 21-27, 28-34 and >= 35 drinks/week or as nondrinkers, moderate (1-13 drinks), high (14-34 drinks) and very high (>= 35 drinks) alcohol consumption. The metabolic syndrome was defined according to the ATP-III criteria and diabetes mellitus as fasting glycemia >= 7 mmol/l or self-reported medication.We used multivariate analysis adjusted for age, gender, smoking status, physical activity and education level to determine the prevalence of the conditions according to drinking categories. Results: 73% (n = 4502) of the participants consumed alcohol, 16% (n = 993) were high drinkers and 2% (n = 126) very high drinkers. In multivariate analysis, alcohol consumption had a U-shaped relationship with the metabolic syndrome and diabetes mellitus. The prevalence of the metabolic syndrome significantly differed between nondrinkers (24%), moderate (19%), high (20%) and very high drinkers (29%) (P<= 0.005). The prevalence of diabetes mellitus also significantly differed between nondrinkers (6.0%), moderate (3.6%), high (3.8%) and very high drinkers (6.7%) (P<= 0.05). These relationships did not differ according to beverage types. Conclusions: The prevalence of the metabolic syndrome and diabetes mellitus decrease with moderate alcohol consumption and increase with heavy drinking, without differences according to beverage types. Recommending to limit alcohol consumption to 1-2 drinks/day might help prevent these conditions in primary care Metabolic Syndrome and Diabetes Mellitus.
Resumo:
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.
Resumo:
Background: The metabolic syndrome (MS) represents a cluster of metabolic disorders that predicts diabetes and cardiovascular disease. Several definitions exist and further descriptive and prospective data are needed to compare these definitions and their significance in different populations. Objective: We examined, in a country of the African region, i) the prevalence of MS according to three major definitions (ATP, IDF, WHO); ii) the contribution of individual MS components; and iii) the agreement between the three considered definitions. We also examined the prevalence among diabetics and non-diabetics. Methods: We conducted an examination survey in a sample representative of the general population aged 25-64 of the Seychelles (Indian Ocean, African region), attended by 1255 persons (participation rate of 80.2%). Results: The prevalence of MS was similar with either definition of MS in men (24%-25%) but differed in women (WHO: 25%, ATP: 32%; IDF: 35%). Upon exclusion of diabetic persons, the prevalence was 5-10% lower for all three MS definitions: most diabetic persons had MS although a substantial proportion of diabetic men aged 45-64 did not have MS. The following components were found most often among persons with MS: 90% had high blood pressure (HBP) and 78% had obesity (ATP); 95% had obesity and 84% had HBP (WHO), and 89% had HBP and 75% had impaired glucose regulation (IDF) -not considering impaired glucose regulation and obesity that are compulsory components of the WHO and IDF definitions, respectively. Among persons with MS based on either of the three definitions (37% of total population), less than 80% met both ATP and IDF criteria, 67% both WHO and IDF criteria, 54% both WHO and ATP criteria and only 37% met all three definitions. Conclusions. We found a fairly high prevalence of MS in an African population. However, because there was only poor agreement between the 3 MS definitions, the fairly similar proportions of MS based on ATP, IDF or WHO definitions identified, to a substantial extent, different subjects as having MS.
Resumo:
INTRODUCTION: Mutations in the TMEM70 are the most common cause of nuclear ATP synthase deficiency resulting in a distinctive phenotype characterized by severe neonatal hypotonia, hypertrophic cardiomyopathy (HCMP), facial dysmorphism, severe lactic acidosis, hyperammonemia and 3-methylglutaconic aciduria (3-MGA). METHODS AND RESULTS: We collected 9 patients with genetically confirmed TMEM70 defect from 8 different families. Six were homozygous for the c.317-2A>G mutation, 2 were compound heterozygous for mutations c.317-2A>G and c.628A>C and 1 was homozygous for the novel c.701A>C mutation. Generalized hypotonia, lactic acidosis, hyperammonemia and 3-MGA were present in all since birth. Five patients presented acute respiratory distress at birth requiring intubation and ventilatory support. HCMP was detected in 5 newborns and appeared a few months later in 3 additional children. Five patients showed a severe and persistent neonatal pulmonary hypertension (PPHN) requiring Nitric Oxide (NO) and/or sildenafil administration combined in 2 cases with high-frequency oscillatory (HFO) ventilation. In 3 of these patients, echocardiography detected signs of HCMP at birth. CONCLUSIONS: PPHN is a life-threatening poorly understood condition with bad prognosis if untreated. Pulmonary hypertension has rarely been reported in mitochondrial disorders and, so far, it has been described in association with TMEM70 deficiency only in one patient. This report further expands the clinical and genetic spectrum of the syndrome indicating PPHN as a frequent and life-threatening complication regardless of the type of mutation. Moreover, in these children PPHN appears even in the absence of an overt cardiomyopathy, thus representing an early sign and a clue for diagnosis.
Resumo:
Nicotinamide adenine dinucleotide (NAD+) biosynthesis from nicotinamide is used by mammalian cells to replenish their NAD+ stores and to avoid unwanted nicotinamide accumulation. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme in this biosynthetic pathway, almost invariably leads to intracellular NAD+ depletion and, when protracted, to ATP shortage and cell demise. Cancer cells and activated immune cells express high levels of NAMPT and are highly susceptible to NAMPT inhibitors, as shown by the activity of these agents in models of malignant and inflammatory disorders. As the spectrum of conditions which could benefit from pharmacological NAMPT inhibition becomes broader, the mechanisms accounting for their activity are also eventually becoming apparent, including the induction of autophagy and the impairment of Ca(2+) - and NF-κB-dependent signaling. Here, we discuss the rationales for exploiting NAMPT inhibitors in cancer and inflammatory diseases and provide an overview of the preclinical and clinical studies in which these agents have been evaluated.
Resumo:
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.
Resumo:
Macrophages play a central role in the pathogenesis of atherosclerosis by accumulating cholesterol through increased uptake of oxidized low-density lipoproteins by scavenger receptor CD36, leading to foam cell formation. Here we demonstrate the ability of hexarelin, a GH-releasing peptide, to enhance the expression of ATP-binding cassette A1 and G1 transporters and cholesterol efflux in macrophages. These effects were associated with a transcriptional activation of nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma in response to binding of hexarelin to CD36 and GH secretagogue-receptor 1a, the receptor for ghrelin. The hormone binding domain was not required to mediate PPARgamma activation by hexarelin, and phosphorylation of PPARgamma was increased in THP-1 macrophages treated with hexarelin, suggesting that the response to hexarelin may involve PPARgamma activation function-1 activity. However, the activation of PPARgamma by hexarelin did not lead to an increase in CD36 expression, as opposed to liver X receptor (LXR)alpha, suggesting a differential regulation of PPARgamma-targeted genes in response to hexarelin. Chromatin immunoprecipitation assays showed that, in contrast to a PPARgamma agonist, the occupancy of the CD36 promoter by PPARgamma was not increased in THP-1 macrophages treated with hexarelin, whereas the LXRalpha promoter was strongly occupied by PPARgamma in the same conditions. Treatment of apolipoprotein E-null mice maintained on a lipid-rich diet with hexarelin resulted in a significant reduction in atherosclerotic lesions, concomitant with an enhanced expression of PPARgamma and LXRalpha target genes in peritoneal macrophages. The response was strongly impaired in PPARgamma(+/-) macrophages, indicating that PPARgamma was required to mediate the effect of hexarelin. These findings provide a novel mechanism by which the beneficial regulation of PPARgamma and cholesterol metabolism in macrophages could be regulated by CD36 and ghrelin receptor downstream effects.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
Adenosine triphosphate (ATP) is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.
Resumo:
Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.
Resumo:
AbstractPPARP is a nuclear receptor responding in vivo to several free fatty acids, and implicated in cell metabolism, differentiation and survival. PPARp is ubiquitously expressed but shows high expression in the developing and adult brain. PPARp is expressed in different cell types such as neurons and astrocytes, where it might play a role in metabolism. To study this nuclear receptor the laboratory engineered a PPARP -/- mouse model. The aim of my PhD was to dissect the role of PPARP in astrocytes.Experiments in primary culture revealed that cortical astrocytes from PPARP -/- mouse have an impaired energetic metabolism. Unstimulated PPARP -/- astrocytes exhibit a 30% diminution in glucose uptake, correlating to a 30% decrease in lactate release and intracellular glucose. After acute stimulation by D- aspartate mimicking glutamate exposure, both WT and -/- astrocytes up-regulate their metabolism to respond to the increasing energy needed (ATP) for glutamate uptake. According to the Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), the ratio between glucose uptake/ lactate release is 1. However, stimulated PPARp -/- astrocytes display a higher increase in lactate release than glucose uptake which remains lower than in WT. The extra glucose equivalents could come from the degradation of intra cellular glycogen stores, which indeed decrease in PPARP -/- cells upon stimulation. Lower glucose metabolism correlates with a decreased acute glutamate uptake in PPARP -/- astrocytes. Reciprocally, we also observed an increase of glutamate uptake and ATP production after treatment of WT astrocytes with a PPARp agonist. Glutamate transporter protein expression is not affected. However, their trafficking and localization might be altered as PPARp -/- astrocytes have higher cholesterol levels, which may also affect proper transporter structure in the membrane.Metabolism, transporter localization and cholesterol levels are respectively linked to cell mobility, cell cytoskeleton and cellular membrane composition. All three functions are important in astrocytes to in vivo acquire star shaped morphology, in a process known as stellation. PPARP -/- astrocytes showed an impaired acquired stellation in presence of neurons or chemical stimuli, as well as more actin stress fibers and cell adhesion structures. While non stellation of astrocytes is mainly an in vitro phenomenon, it reveals PPARp -/- primary astrocytes inability to respond to different exterior stimuli. These morphological phenotypes correlate with a slower migration in cell culture wound healing assays.This thesis work demonstrates that PPARp is implicated in cortical astrocyte glucose metabolism. PPARp absence leads to an unusual intracellular glycogen use. Added to the effect on acute glutamate uptake and astrocyte migration, PPARp could be an interesting target for neuroprotection therapies.RésuméPPARP est un récepteur nucléaire qui a pour ligands naturels certains acides gras libres. Il est impliqué dans le métabolisme, la différentiation et la survie des cellules. PPARP est ubiquitaire, et a une expression élevée dans le cerveau en développement ainsi qu'adulte. PPARp est exprimé dans différents types cellulaires tels que les neurones et les astrocytes, où il régule potentiellement leurs métabolismes. Pour étudier ce récepteur nucléaire, le laboratoire a créé un modèle de souris PPARp -/-. L'objectif de ma thèse est de comprendre le rôle de PPARp dans les astrocytes.Les expériences montrent un défaut du métabolisme énergétique dans les astrocytes corticaux primaires tirés de souris PPARp -/-. Sans stimulation, l'entrée du glucose dans les astrocytes PPARP -/- est diminuée de 30% ce qui correspond à une diminution de 30% du relargage du lactate. Après stimulation par du D-Aspartate qui mime une exposition au glutamate, les astrocytes WT et -/- augmentent leur métabolisme en réponse à la demande accrue en énergie (ATP) due à l'entrée du glutamate. D'après l'Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), le ratio entre le glucose entrant et le lactate sortant est de 1. Cependant le relargage du lactate dans les astrocytes PPARP-/- est plus élevé que l'entrée du glucose. L'apport supplémentaire de glucose transformé en lactate pourrait provenir de la dégradation des stocks de glycogène intracellulaire, qui sont partiellement diminués après stimulation dans les cellules PPARP -/-. Un métabolisme plus faible du glucose corrèle avec une réduction de l'import du glutamate dans les astrocytes PPARp -/-. Réciproquement, nous observons une augmentation de l'import du glutamate et de la production d'ATP après traitement avec l'agoniste pour PPARp. Bien que l'expression des transporteurs de glutamate ne soit pas affectée, nous ne pouvons pas exclure que leur localisation et leur structure soient altérées du fait du niveau élevé de cholestérol dans les astrocytes PPARp -/-.Le métabolisme, la localisation des transporteurs et le niveau de cholestérol sont tous liés au cytosquelette, à la mobilité, et à la composition des membranes cellulaires. Toutes ces fonctions sont importantes pour les astrocytes pour acquérir leur morphologie in vivo. Les astrocytes PPARP -/- présentent un défaut de stellation, aussi bien en présence de neurones que de stimuli chimiques, ainsi qu'un plus grand nombre de fibres de stress (actine) et de structures d'adhésion cellulaire. Bien que les astrocytes non stellaires soient principalement observés in vitro, le défaut de stellation des astrocytes primaires PPARp -/- indique une incapacité à répondre aux différents stimuli extérieurs. Ces phénotypes morphologiques corrèlent avec une migration plus lente en cas de lésion de la culture.Ce travail de thèse a permis de démontrer l'implication de PPARP dans le métabolisme du glucose des astrocytes corticaux. L'absence de ce récepteur nucléaire amène à l'utilisation du glucose intracellulaire, auquel s'ajoutent les effets sur l'import du glutamate et la migration des astrocytes. PPARp aurait des effets neuroprotecteurs, et de ce fait pourrait être utilisé à des fins thérapeutiques.
Resumo:
The development of orally active small molecule inhibitors of the epidermal growth factor receptor (EGFR) has led to new treatment options for non-small cell lung cancer (NSCLC). Patients with activating mutations of the EGFR gene show sensitivity to, and clinical benefit from, treatment with EGFR tyrosine kinase inhibitors (EGFR-TKls). First generation reversible ATP-competitive EGFR-TKls, gefitinib and erlotinib, are effective as first, second-line or maintenance therapy. Despite initial benefit, most patients develop resistance within a year, 50-60% of cases being related to the appearance of a T790M gatekeeper mutation. Newer, irreversible EGFR-TKls - afatinib and dacomitinib - covalently bind to and inhibit multiple receptors in the ErbB family (EGFR, HER2 and HER4). These agents have been mainly evaluated for first-line treatment but also in the setting of acquired resistance to first-generation EGFR-TKls. Afatinib is the first ErbB family blocker approved for patients with NSCLC with activating EGFR mutations; dacomitinib is in late stage clinical development. Mutant-selective EGFR inhibitors (AZD9291, CO-1686, HM61713) that specifically target the T790M resistance mutation are in early development. The EGFR-TKIs differ in their spectrum of target kinases, reversibility of binding to EGFR receptor, pharmacokinetics and potential for drug-drug interactions, as discussed in this review. For the clinician, these differences are relevant in the setting of polymedicated patients with NSCLC, as well as from the perspective of innovative anticancer drug combination strategies.
Resumo:
The subcellular localization of a calmodulin-stimulated calcium (Ca2+)-ATPase activity from maize roots (Zea mays L., cv LG 11) was studied. For this purpose, an efficient procedure was developed to prepare sealed plasma membrane vesicles allowing the measurement of proton and Ca2+ transport activities. Two-day-old root membranes were fractionated by sucrose and dextran density gradient centrifugation. Marker enzymes were used to study the distribution of the different membranes in the gradients and a filtration technique was developed to measure Ca-45(2+) transport in sealed vesicles. Most of the ATP-dependent Ca2+ transport activity was associated with the ER. However, a small part of this activity was associated with the tonoplast (corresponding to the activity of the H+/Ca2+ antiport) and the plasma membrane. When the Ca2+ transport was measured in the presence of exogenous calmodulin (1 muM), a 3-5-fold increase of uptake was measured. The calmodulin-stimulated activity was associated with the tonoplast vesicles only. This activity was insensitive to monensin, a proton ionophore, ruling out a direct effect of calmodulin on the H+/Ca2+ antiport. In conclusion, four different Ca2+ transporters are present in young maize root cells. A Ca2+/H+ antiport system is present on the tonoplast, whereas, the plasma membrane and the ER possess each a calmodulinin-sensitive Ca2+-ATPase. Finally, a calmodulin-stimulated Ca2+-ATPase is associated with the tonoplast.
Resumo:
Analysing human genetic variation provides a powerful tool in understanding risk factors for disease. Toxoplasma gondii acquired by the mother can be transmitted to the fetus. Infants with the most severe clinical signs in brain and eye are those infected early in pregnancy when fetal immunity is least well developed. Genetic analysis could provide unique insight into events in utero that are otherwise difficult to determine. We tested the hypothesis that propensity for T. gondii to cause eye disease is associated with genes previously implicated in congenital or juvenile onset ocular disease. Using mother-child pairs from Europe (EMSCOT) and child/parent trios from North America (NCCCTS), we demonstrated that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4 previously associated with juvenile onset retinal dystrophies including Stargardt's disease. Polymorphisms at COL2A1 encoding type II collagen, previously associated with Stickler syndrome, associated only with ocular disease in congenital toxoplasmosis. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting, which provided an explanation for the patterns of inheritance observed. These genetic and epigenetic risk factors provide unique insight into molecular pathways in the pathogenesis of disease.