958 resultados para 3d transition metal complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of economical heterogeneous catalysts for the activation of methane is a major challenge for the chemical industry. Screening potential candidates becomes more feasible using rational catalyst design to understand the activity of potential catalysts for CH4 activation. The focus of the present paper is the use of density functional theory to examine and elucidate the properties of doped CeO2. We dope with Cu and Zn transition metals having variable oxidation state (Cu), and a single oxidation state (Zn), and study the activation of methane. Zn is a divalent dopant and Cu can have a +1 or +2 oxidation state. Both Cu and Zn dopants have an oxidation state of +2 after incorporation into the CeO2 (111) surface; however a Hubbard +U correction (+U = 7) on the Cu 3d states is required to maintain this oxidation state when the surface interacts with adsorbed species. Dissociation of methane is found to occur locally at the dopant cations, and is thermodynamically and kinetically more favorable on Zn-doped CeO2 than Cu-doped CeO2. The origins of this lie with the Zn(II) dopant moving towards a square pyramidal geometry in the sub surface layer which facilitates the formation of two-coordinated surface oxygen atoms, that are more beneficial for methane activation on a reducible oxide surface. These findings can aid in rational experimental catalyst design for further exploration in methane activation processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis describes the development of heterogeneous catalytic methodologies using metal−organic frameworks (MOFs) as porous matrices for supporting transition metal catalysts. A wide spectrum of chemical reactions is covered. Following the introductory section (Chapter 1), the results are divided between one descriptive part (Chapter 2) and four experimental parts (Chapters 3–6). Chapter 2 provides a detailed account of MOFs and their role in heterogeneous catalysis. Specific synthesis methods and characterization techniques that may be unfamiliar to organic chemists are illustrated based on examples from this work. Pd-catalyzed heterogeneous C−C coupling and C−H functionalization reactions are studied in Chapter 3, with focus on their practical utility. A vast functional group tolerance is reported, allowing access to substrates of relevance for the pharmaceutical industry. Issues concerning the recyclability of MOF-supported catalysts, leaching and operation under continuous flow are discussed in detail. The following chapter explores puzzling questions regarding the nature of the catalytically active species and the pathways of deactivation for Pd@MOF catalysts. These questions are addressed through detailed mechanistic investigations which include in situ XRD and XAS data acquisition. For this purpose a custom reaction cell is also described in Chapter 4. The scope of Pd@MOF-catalyzed reactions is expanded in Chapter 5. A strategy for boosting the thermal and chemical robustness of MOF crystals is presented. Pd@MOF catalysts are coated with a protecting SiO2 layer, which improves their mechanical properties without impeding diffusion. The resulting nanocomposite is better suited to withstand the harsh conditions of aerobic oxidation reactions. In this chapter, the influence of the nanoparticles’ geometry over the catalyst’s selectivity is also investigated. While Chapters 3–5 dealt with Pd-catalyzed processes, Chapter 6 introduces hybrid materials based on first-row transition metals. Their reactivity is explored towards light-driven water splitting. The heterogenization process leads to stabilized active sites, facilitating the spectroscopic probing of intermediates in the catalytic cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of my PhD was the combination of the principles of transition metal catalysis with photoredox catalysis. We focused our attention on the development of novel dual catalytic protocols for the functionalization of carbonyl compounds through the generation of transient nucleophilic organometallic species. Specifically, we focused on the development of new methodologies combining photoredox catalysis with titanium and nickel in low oxidation state. Firstly, a Barbier-type allylation of aromatic and aliphatic aldehydes –catalytic in titanium– in the presence of a blue photon-absorbing dye was developed. Parallelly, we were pleased to observe that the developed methodology could also be extended to the propargylation of aldehydes under analogous conditions. After an extensive re–optimization of all the reaction parameters, we developed an enantioselective and diastereoselective pinacol coupling of aromatic aldehydes promoted by non-toxic, cheap and easy to synthetize titanium complexes. The key feature, that allows the complete (dia)stereocontrol played by titanium, is the employment of a red-absorbing organic dye. The tailored (photo)redox properties of the red-absorbing organic dye [nPr–DMQA+][BF4–] promote the selective reduction of Ti(IV) to Ti(III). Moreover, even if the major contribution in dual photoredox and nickel catalysis is devoted to the realization of cross-coupling-type reactions, we wanted to evaluate different possible scenarios. Our focus was on the possibility of exploiting intermediates arising from the oxidative addition of nickel complexes as transient nucleophilic species. The first topic considered regarded the possibility to perform allylation of aldehydes by dual photoredox and nickel catalysis. In the first instance, a non–stereocontrolled version of the reaction was presented. Finally, after a long series of drastic modification of the reaction conditions, a highly enantioselective variant of the protocol was also reported. All the reported methodologies are supported by careful photophysical analysis and, in some cases, computational modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy issues have always been a subject of concern to people. During the past 30 years, rechargeable Li-ion batteries (LIBs) have been widely used in portable electronic devices and power tools because of their high energy density and efficiency among practical secondary batteries. While the unevenly distribution of Lithium sources and the increasing cost of lithium-raw material can not satisfy the requirement for further cost reduction, especially for the grid-scale energy storage. Post-lithium ion batteries as promising replacement for LIBs have attracted wide attention, owing to their high abundant resources and adequate insertion potential. Similar with Li-ion batteries, finding a suitable electrode material is the key for the research and application of the post-Li ion batteries. In our project, we focus our study on Prussian blue analogues (PBAs), with formula AxM[M’(CN)6]1-y□y•zH2O (0≤x≤2, 0metal ion, M and M’ are transition metal ions, □ represents the M’(CN)6 vacancy, which are archetype of metal-organic framework, with 3D frameworks which allow for a facile insertion/ extraction of ions with negligible lattice strain. By substituting the metal sites with different transition metals, we can get a series of compounds that can be used as both cathode and anode material for both Li-ion and post-Li batteries. The most commonly studied PBAs are metal haxacyanoferrate, with the carbon-sites of -CN- ligands fix connected with Fe. Here, we synthesized three different PBAs: manganese hexacynoferrate (MnHCF), zinc hexacynoferrate (ZnHCF) and titanium hexacynoferrate (TiHCF), using co-precipitation method, and their electrochemical properties were tested in both aqueous Na+, K+, Mg2+, Zn2+ and organic Li+, Na+ electrolytes. Various X-ray techniques were employed to study their electronic and structural properties of electrodes and electrochemical reaction mechanism during cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam, fac-[Ru(NO)Cl(2)(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl center dot H(2)O ((1-carboxypropyl) cyclam = 3-(1,4,8,11-tetraazacyclotetradecan-1-yl) propionic acid)), (I) are described. Chloride ligands do not undergo aquation reactions (at 25 degrees C, pH 3). The rate of nitric oxide (NO) dissociation (k(obs-NO)) upon reduction of I is 2.8 s(-1) at 25 +/- 1 degrees C (in 0.5 mol L(-1) HCl), which is close to the highest value found for related complexes. The uncoordinated carboxyl of I has a pK(a) of similar to 3.3, which is close to that of the carboxyl of the non coordinated (1-carboxypropyl) cyclam (pK(a) = 3.4). Two additional pK(a) values were found for I at similar to 8.0 and similar to 11.5. Upon electrochemical reduction or under irradiation with light (lambda(irr) = 350 or 520 nm; pH 7.4), I releases NO in aqueous solution. The cyclam ring N bound to the carboxypropyl group is not coordinated, resulting in a fac configuration that affects the properties and chemical reactivities of I, especially as NO donor, compared with analogous trans complexes. Among the computational models tested, the B3LYP/ECP28MDF, cc-pVDZ resulted in smaller errors for the geometry of I. The computational data helped clarify the experimental acid-base equilibria and indicated the most favourable site for the second deprotonation, which follows that of the carboxyl group. Furthermore, it showed that by changing the pH it is possible to modulate the electron density of I with deprotonation. The calculated NO bond length and the Ru/NO charge ratio indicated that the predominant canonical structure is [Ru(III)NO], but the Ru-NO bond angles and bond index (b.i.) values were less clear; the angles suggested that [Ru(II)NO(+)] could contribute to the electronic structure of I and b.i. values indicated a contribution from [Ru(IV)NO(-)]. Considering that some experimental data are consistent with a [Ru(II)NO(+)] description, while others are in agreement with [Ru(III)NO], the best description for I would be a linear combination of the three canonical forms, with a higher weight for [Ru(II)NO(+)] and [Ru(III)NO].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of transition metals to III-V semiconductors radically changes their electronic, magnetic, and structural properties. We show by ab initio calculations that in contrast to the conventional semiconductor alloys, the lattice parameter in magnetic semiconductor alloys, including those with diluted concentration, strongly deviates from Vegard's law. We find a direct correlation between the magnetic moment and the anion-transition metal bond lengths and derive a simple and general formula that determines the lattice parameter of a particular magnetic semiconductor by considering both the composition and magnetic moment. This dependence can explain some experimentally observed anomalies and stimulate other kind of investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. It is well known that many porphyrins have transition-metal atoms, and we have explored transition-metal atoms bonded to those porphyrin-like defects inN-doped carbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Green's function methods. The results determined the heme B-like defect (an iron atom bonded to four nitrogens) is the most stable and has a higher polarization current for a single defect. With randomly positioned heme B defects in nanotubes a few hundred nanometers long, the polarization reaches near 100%, meaning they are effective spin filters. A disorder-induced magnetoresistance effect is also observed in those long nanotubes, and values as high as 20 000% are calculated with nonmagnectic eletrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound, C13H12N4O, crystallizes with two independent molecules in the asymmetric unit. The compound crystallizes as the ZE isomer, where Z and E refer to the configuration around the C=N and N-C bonds, respectively, with an N-H center dot center dot center dot N-py (py is pyridine) intramolecular hydrogen bond. The dihedral angles between the least-squares planes through the semicarbazone group and the pyridyl ring are 22.70 (9) and 27.26 (9)degrees for the two molecules. There are intermolecular N-H center dot center dot center dot O hydrogen bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cuboctahedron (CUB) and icosahedron (ICO) model structures are widely used in the study of transition-metal (TM) nanoparticles (NPs), however, it might not provide a reliable description for small TM NPs such as the Pt(55) and Au(55) systems in gas phase. In this work, we combined density-functional theory calculations with atomic configurations generated by the basin hopping Monte Carlo algorithm within the empirical Sutton-Chen embedded atom potential. We identified alternative lower energy configurations compared with the ICO and CUB model structures, e. g., our lowest energy structures are 5.22 eV (Pt(55)) and 2.01 eV (Au(55)) lower than ICO. The energy gain is obtained by the Pt and Au diffusion from the ICO core region to the NP surface, which is driven by surface compression (only 12 atoms) on the ICO core region. Therefore, in the lowest energy configurations, the core size reduces from 13 atoms (ICO, CUB) to about 9 atoms while the NP surface increases from 42 atoms (ICO, CUB) to about 46 atoms. The present mechanism can provide an improved atom-level understanding of small TM NPs reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The longitudinal and transverse magnetostriction and microstructure of polycrystalline Fe(100-x)Ge(x) (x= 8, 12, 15, 20) alloys were investigated in order to correlate the magnetostriction with microstructure. In order to obtain different microstructures in the Fe(100-x)Ge(x) alloys, the samples were annealed at 600 degrees C during 2 h and at 1150 degrees C for half hour and then quenched in cold water. For Ge concentrations lower than 14 at.%, the longitudinal magnetostriction is positive and increases positively up to 22 ppm at 12 at.% Ge then decreases and vanishes at about 14 at.% Ge. For further Ge concentration increase the longitudinal magnetostriction is negative and reaches -30 ppm for Fe(80)Ge(20). This behavior, that is very similar to that reported for Fe-Si alloys, is explained by the structural changes caused by different thermal histories of the alloys. (C) 2008 Published by Elsevier B. V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molybdenum and tungsten bimetallic oxides were synthetized according to the following methods: Pechini, coprecipitation and solid state reaction (SSR). After the characterization, those solids were carbureted at programmed temperature. The carburation process was monitored by checking the consumption of carburant hydrocarbon and CO produced. The monitoring process permits to avoid or to diminish the formation of pirolytic carbon.