897 resultados para 2447: modelling and forecasting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last two decades there have been substantial developments in the mathematical theory of inverse optimization problems, and their applications have expanded greatly. In parallel, time series analysis and forecasting have become increasingly important in various fields of research such as data mining, economics, business, engineering, medicine, politics, and many others. Despite the large uses of linear programming in forecasting models there is no a single application of inverse optimization reported in the forecasting literature when the time series data is available. Thus the goal of this paper is to introduce inverse optimization into forecasting field, and to provide a streamlined approach to time series analysis and forecasting using inverse linear programming. An application has been used to demonstrate the use of inverse forecasting developed in this study. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the costs associated with greenfield residential development are apparent and tangible. For example, regulatory fees, government taxes, acquisition costs, selling fees, commissions and others are all relatively easily identified since they represent actual costs incurred at a given point in time. However, identification of holding costs are not always immediately evident since by contrast they characteristically lack visibility. One reason for this is that, for the most part, they are typically assessed over time in an ever-changing environment. In addition, wide variations exist in development pipeline components: they are typically represented from anywhere between a two and over sixteen years time period - even if located within the same geographical region. Determination of the starting and end points, with regards holding cost computation, can also prove problematic. Furthermore, the choice between application of prevailing inflation, or interest rates, or a combination of both over time, adds further complexity. Although research is emerging in these areas, a review of the literature reveals attempts to identify holding cost components are limited. Their quantification (in terms of relative weight or proportionate cost to a development project) is even less apparent; in fact, the computation and methodology behind the calculation of holding costs varies widely and in some instances completely ignored. In addition, it may be demonstrated that ambiguities exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Yet their impact on housing affordability is widely acknowledged to be profound, with their quantification potentially maximising the opportunities for delivering affordable housing. This paper seeks to build on earlier investigations into those elements related to holding costs, providing theoretical modelling of the size of their impact - specifically on the end user. At this point the research is reliant upon quantitative data sets, however additional qualitative analysis (not included here) will be relevant to account for certain variations between expectations and actual outcomes achieved by developers. Although this research stops short of cross-referencing with a regional or international comparison study, an improved understanding of the relationship between holding costs, regulatory charges, and housing affordability results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do humans respond to their social context? This question is becoming increasingly urgent in a society where democracy requires that the citizens of a country help to decide upon its policy directions, and yet those citizens frequently have very little knowledge of the complex issues that these policies seek to address. Frequently, we find that humans make their decisions more with reference to their social setting, than to the arguments of scientists, academics, and policy makers. It is broadly anticipated that the agent based modelling (ABM) of human behaviour will make it possible to treat such social effects, but we take the position here that a more sophisticated treatment of context will be required in many such models. While notions such as historical context (where the past history of an agent might affect its later actions) and situational context (where the agent will choose a different action in a different situation) abound in ABM scenarios, we will discuss a case of a potentially changing context, where social effects can have a strong influence upon the perceptions of a group of subjects. In particular, we shall discuss a recently reported case where a biased worm in an election debate led to significant distortions in the reports given by participants as to who won the debate (Davis et al 2011). Thus, participants in a different social context drew different conclusions about the perceived winner of the same debate, with associated significant differences among the two groups as to who they would vote for in the coming election. We extend this example to the problem of modelling the likely electoral responses of agents in the context of the climate change debate, and discuss the notion of interference between related questions that might be asked of an agent in a social simulation that was intended to simulate their likely responses. A modelling technology which could account for such strong social contextual effects would benefit regulatory bodies which need to navigate between multiple interests and concerns, and we shall present one viable avenue for constructing such a technology. A geometric approach will be presented, where the internal state of an agent is represented in a vector space, and their social context is naturally modelled as a set of basis states that are chosen with reference to the problem space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex interaction of the bones of the foot has been explored in detail in recent years, which has led to the acknowledgement in the biomechanics community that the foot can no longer be considered as a single rigid segment. With the advance of motion analysis technology it has become possible to quantify the biomechanics of simplified units or segments that make up the foot. Advances in technology coupled with reducing hardware prices has resulted in the uptake of more advanced tools available for clinical gait analysis. The increased use of these techniques in clinical practice requires defined standards for modelling and reporting of foot and ankle kinematics. This systematic review aims to provide a critical appraisal of commonly used foot and ankle marker sets designed to assess kinematics and thus provide a theoretical background for the development of modelling standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex interaction of the bones of the foot has been explored in detail in recent years, which has led to the acknowledgement in the biomechanics community that the foot can no longer be considered as a single rigid segment. With the advance of motion analysis technology it has become possible to quantify the biomechanics of simplified units or segments that make up the foot. Advances in technology coupled with reducing hardware prices has resulted in the uptake of more advanced tools available for clinical gait analysis. The increased use of these techniques in clinical practice requires defined standards for modelling and reporting of foot and ankle kinematics. This systematic review aims to provide a critical appraisal of commonly used foot and ankle marker sets designed to assess kinematics and thus provide a theoretical background for the development of modelling standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employs a VAR-GARCH model to investigate the return links and volatility transmission between the S&P 500 and commodity price indices for energy, food, gold and beverages over the turbulent period from 2000 to 2011. Understanding the price behavior of commodity prices and the volatility transmission mechanism between these markets and the stock exchanges are crucial for each participant, including governments, traders, portfolio managers, consumers, and producers. For return and volatility spillover, the results show significant transmission among the S&P 500 and commodity markets. The past shocks and volatility of the S&P 500 strongly influenced the oil and gold markets. This study finds that the highest conditional correlations are between the S&P 500 and gold index and the S&P 500 and WTI index. We also analyze the optimal weights and hedge ratios for commodities/S&P 500 portfolio holdings using the estimates for each index. Overall, our findings illustrate several important implications for portfolio hedgers for making optimal portfolio allocations, engaging in risk management and forecasting future volatility in equity and commodity markets. © 2013 Elsevier B.V.