994 resultados para 2 sigma range BP
Resumo:
The assemblages of marine sediments on the SW Iberian shelf have been controlled by contributions from distinct sources, which have varied in response to environmental changes since the Last Glacial Maximum (LGM). The rapid, decadal scale Mediterranean overturning circulation permits mixing of suspended particles from the entire Mediterranean Sea. They are entrained into the suspended particulate matter (SPM) carried by Mediterranean Outflow Water (MOW), which enters the eastern North Atlantic through the Strait of Gibraltar and spreads at intermediate depths in the Gulf of Cadiz and along the Portuguese continental margin. Other major sediment sources that have contributed to the characteristics and budget of SPM along the flow path of MOW on the SW Iberian shelf are North African dust and river-transported particles from the Iberian Peninsula. To reconstruct climate- and circulation-driven changes in the supply of sediments over the past ~23000 cal yr B.P., radiogenic Nd, Sr and Pb isotope records of the clay-size sediment fraction were obtained from one gravity core in the Gulf of Cadiz (577 m water depth) and from two gravity cores on the Portuguese shelf (1745 m, 1974 m water depth). These records are supplemented by time series analyses of clay mineral abundances from the same set of samples. Contrary to expectations, the transition from the LGM to the Holocene was not accompanied by strong changes in sediment provenance or transport, whereas Heinrich Event 1 (H1) and the African Humid Period (AHP) were marked by significantly different isotopic signatures reflecting changes in source contributions caused by supply of ice rafted material originating from the North American craton during H1 and diminished supply of Saharan dust during the AHP. The data also reveal that the timing of variations in the clay mineral abundances was decoupled from that of the radiogenic isotope signatures.
Resumo:
The signature of Dansgaard-Oeschger events - millennial-scale abrupt climate oscillations during the last glacial period - is well established in ice cores and marine records (Labeyrie, 2000, doi:10.1126/science.290.5498.1905; Blunier and Brook, 2001, doi:10.1126/science.291.5501.109: Bond et al., 2001, doi:10.1126/science.1065680). But the effects of such events in continental settings are not as clear, and their absolute chronology is uncertain beyond the limit of 14C dating and annual layer counting for marine records and ice cores, respectively. Here we present carbon and oxygen isotope records from a stalagmite collected in southwest France which have been precisely dated using 234U/230Th ratios. We find rapid climate oscillations coincident with the established Dansgaard-Oeschger events between 83,000 and 32,000 years ago in both isotope records. The oxygen isotope signature is similar to a record from Soreq cave, Israel (Bar-Mathews et al., 2000, doi:10.1016/S0009-2541(99)00232-6), and deep-sea records (Bond et al., 1993, doi:10.1038/365143a0; Shackleton and Hall, 2001, doi:10.1029/2000PA000513), indicating the large spatial scale of the climate oscillations. The signal in the carbon isotopes gives evidence of drastic and rapid vegetation changes in western Europe, an important site in human cultural evolution. We also find evidence for a long phase of extremely cold climate in southwest France between 61.2 +/-0.6 and 67.4 0.9 kyr ago.
Resumo:
The oxygen isotopic composition (d18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO3]2- effect on d18O is universal for unicellular calcifying planktonic organisms. The slopes of the d18O/[CO3]2- relationships range between -0.0243 per mil/(µmol/kg) (calcareous dinoflagellate T. heimii) and the previously published -0.0022 per mil/(µmol/kg) (non-symbiotic planktonic foramifera Orbulina universa), while C. leptoporus has a slope of -0.0048 per mil/(µmol/kg). We present a simple conceptual model, based on the contribution of d18O-enriched [HCO3]- to the [CO3]2- pool in the calcifying vesicle, which can explain the [CO3]2- effect on d18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms. The large range in d18O/[CO3]2- slopes should possibly be explored as a means for paleoreconstruction of surface [CO3]2-, particularly through comparison of the response in ecologically similar planktonic organisms.
Resumo:
We reconstruct the environmental evolution of the East China Sea in the past 14 kyr based on glycerol dialkyl glycerol tetraethers (GDGTs) in a sediment core from the subaqueous Yangtze River Delta. Two primary phases are recognized. Phase I (13.8-8 cal kyr BP) reflects a predominantly continental influence, showing distinctly higher concentrations of branched GDGTs (averaged 143 ng/g dry sediment weight, dsw) than isoprenoid GDGTs (averaged 36 ng/g dsw), high BIT index (branched vs. isoprenoid tetraethers) values (>0.78) and a fluctuating GDGT-0/crenarchaeol ratio (R0/5, varied from 0.52 to 3.81). Within this interval, temporal increases of terrestrial and marine influence are attributed to Younger Dryas (YD) (ca. 12.9-12.2 cal kyr BP) cold event and melt-water pulse (MWP) -1B (11.5-11.1 cal kyr BP), respectively. The prominent transition from 8 to 7.9 cal kyr BP shows a sharp decrease in BIT index value (<0.4) and increase in crenarchaeol, which marks the beginning of phase II. Afterwards, the proxies remain relatively constant, which indicates that phase II (7.9 cal kyr BP-present) is a shelf sedimentary environment with high stand of sea level. Overall, the BIT index in our record serves as a good marker for terrestrial influence at the site, and likely reflects the flooding history of the region. The TEX86 (TetraEther Index of tetraethers consisting of 86 carbons) proxy is not applicable in phase I because of an excess terrestrial influence; but it seems to be valid for revealing the annual SST in phase II (21.6±0.9°C, n=49). In contrast, the MBT'/CBT (Methylation of Branched Tetraethers and Cyclization of Branched Tetraethers) proxy appears to faithfully record the annual mean air temperature (MAT) (14.3±0.63°C, n=68) and presents an integrated signal over the middle and lower Yangtze River drainage basin.
Resumo:
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.
Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.
Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.
Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
Resumo:
Basement intersected in Holes 525A, 528, and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid- and lower NW flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge. The basalts were erupted approximately 70 Ma, a date consistent with formation at the paleo mid-ocean ridge. The basalt types vary from aphyric quartz tholeiites on the Ridge crest to highly Plagioclase phyric olivine tholeiites on the flank. These show systematic differences in incompatible trace element and isotopic composition, and many element and isotope ratio pairs form systematic trends with the Ridge crest basalts at one end and the highly phyric Ridge flank basalts at the other. The low 143Nd/144Nd (0.51238) and high 87Sr/86Sr (0.70512) ratios of the Ridge crest basalts suggest derivation from an old Nd/Sm and Rb/Sr enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset by somewhat lower 143Nd/144Nd values. The isotopic ratio trends may be extrapolated beyond the Ridge flank basalts (which have 143Nd/144Nd of 0.51270 and 87Sr/86Sr of 0.70417) in the direction of typical MORB compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end-member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing or partial melting. They also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources in the petrogenesis of Walvis Ridge basalts.
Resumo:
Seasonal changes in surface ocean temperature are increasingly recognized as an important parameter of the climate system. Here we assess the potential of analyzing single-specimen planktonic foraminifera as proxy for the seasonal temperature contrast (seasonality). Oxygen isotopes and Mg/Ca ratios were measured on single specimens of Globigerinoides ruber, extracted from surface sediment samples of the Mediterranean Sea and the adjacent Atlantic Ocean. Variability in d18O and Mg/Ca was then compared to established modern seasonal changes in temperature and salinity for both regions. The results show that (1) average d18O-derived temperatures correlate with modern annual average temperatures for most sites, (2) the range in d18O- and Mg/Ca-derived temperature estimates from single-specimen analysis resembles the range in seasonal temperature values at the sea surface (0-50 m) in the Mediterranean Sea and the Atlantic Ocean, and (3) there is no strong correlation between Mg/Ca- and d18O-derived temperatures from the same specimens in the current data set, indicating that other parameters (salinity, carbonate ion concentration, symbiont activity, ontogenesis, and natural variability) potentially affect these proxies.
Resumo:
During the last glacial termination, the upper North Pacific Ocean underwent dramatic and rapid changes in oxygenation that lead to the transient intensification of oxygen minimum zones (OMZs), recorded by the widespread occurrence of laminated sediments on circum-Pacific continental margins. We present a new laminated sediment record from the mid-depth (1100 m) northern Bering Sea margin that provides insight into these deglacial OMZ maxima with exceptional, decadal-scale detail. Combined ultrahigh-resolution micro-X-ray-fluorescence (micro-XRF) data and sediment facies analysis of laminae reveal an alternation between predominantly terrigenous and diatom-dominated opal sedimentation. The diatomaceous laminae are interpreted to represent spring/summer productivity events related to the retreating sea ice margin.We identified five laminated sections in the deglacial part of our site. Lamina counts were carried out on these sections and correlated with the Bølling-Allerød and Preboreal phases in the North Greenland Ice Core (NGRIP) oxygen isotope record, indicating an annual deposition of individual lamina couplets (varves). The observed rapid decadal intensifications of anoxia, in particular within the Bølling-Allerød, are tightly coupled to short-term warm events through increases in regional export production. This dependence of laminae formation on warmer temperatures is underlined by a correlation with published Bering Sea sea surface temperature records and d18O data of planktic foraminifera from the Gulf of Alaska. The rapidity of the observed changes strongly implies a close atmospheric teleconnection between North Pacific and North Atlantic regions.We suggest that concomitant increases in export production and subsequent remineralization of organic matter in the Bering Sea, in combination with oxygen-poor waters entering the Being Sea, drove down oxygen concentrations to values below 0.1ml/l and caused laminae preservation. Calculated benthic-planktic ventilation ages show no significant variations throughout the last deglaciation, indicating that changes in formation rates or differing sources of North Pacific mid-depth waters are not prime candidates for strengthening the OMZ at our site. The age models established by our correlation procedure allow for the determination of calendar age control points for the Bølling-Allerød and the Preboreal that are independent of the initial radiocarbon-based chronology. Resulting surface reservoir ages range within 730-990 yr during the Bølling-Allerød, 800-1100 yr in the Younger Dryas, and 765-775 yr for the Preboreal.
Resumo:
Sr and Nd isotopic compositions of Arctic marine sediments characterize changes of sediment source regions and trace shelf-ocean particle pathways during glacial-interglacial transitions in the eastern Arctic Ocean. In the 140-ka sedimentary record of a marine core from Yermak Plateau, north of Svalbard, 87Sr/86Sr ratios and epsion-Nd values vary between 0.717 and 0.740 and 39.3 and 314.9, respectively. Sr and Nd isotopic composition both change characteristically during glacial-interglacial cycles and are correlated with the extension of the Svalbard/Barents Sea ice sheet (SBIS). The downcore variation in Sr and Nd isotopic composition indicates climatically induced changes in sediment provenance from two isotopically distinct end-members: (1) Eurasian shelf sediments as a distal source; and (2) Svalbard bedrock as a proximal source that coincide with a change in transport mechanism from sea ice to glacial ice. During glacier advance from Svalbard and intensified glacial bedrock erosion, epsion-Nd values decrease gradually to a minimum value of 314.9 due to increased input of crystalline Svalbard bedrock material. During glacial maxima, the SBIS covered the entire Barents Sea shelf and supplied increasing amounts of Eurasian shelf material to the Arctic Ocean as ice rafted detritus (IRD). Epsion-Nd values in glacial sediments reach maximum values that are comparable to the average value of modern Eurasian shelf and sea ice sediments (epsion-Nd = 310.3). This confirms ice rafting as a major sediment transport mechanism for Eurasian shelf sediments into the Arctic Ocean and trace a sediment origin from the Kara Sea/Laptev Sea shelf area. After the decay of the shelf-based SBIS, the glacial shelf sediment spikes during glacial terminations I (epsion-Nd = 310.6) and II (epsion-Nd = 310.1) epsion-Nd values rapidly decrease to values of 312.5 typical for interglacial averages. The downcore Sr isotopic composition is anticorrelated to the Nd isotopic composition, but may be also influenced by grain-size effects. In contrast, the Nd isotopic composition in clay- to silt-size fractions of one bulk sediment sample is similar to within 0.3-0.8 epsion-Nd units and seems to be a grain-size independent provenance tracer.
Resumo:
In this study we utilize two organic geochemical proxies, the Uk'37 index and TEX86, to examine past sea surface temperatures (SST) from a site located near the Nile River Delta in the eastern Mediterranean (EM) Sea. The Uk'37 and TEX86 records generally are in agreement and indicate SST ranges of 14°C-26°C and 14°C-28°C, respectively, during the last 27 cal ka. During the Holocene, TEX86-based SST estimates are usually higher than Uk'37-based SST estimates, which is likely due to seasonal differences between the timing of the haptophyte and crenarchaeota blooms in the EM and is related to the onset of the modern flow regime of the Nile River. Both records show that SST varied on centennial to millennial timescales in response to global climate events, i.e., cooling during the Last Glacial Maximum (LGM), Heinrich event 1 (H1), and the Younger Dryas (YD) and warming during the Bølling-Allerød and in the early Holocene during deposition of sapropel S1. The H1 cooling was particularly severe and is marked by a drop in SST of ~4.5°C in comparison to pre-H1 SST, with temperatures >1°C cooler than during the LGM. In contrast to high-latitude and western Mediterranean records, which indicate both an abrupt onset and termination of the YD event, the transition from the YD to the Holocene was much more gradual in the EM.
Resumo:
The interglacial known as Marine Isotope Stage 11 has been proposed to be analogous to the Holocene, owing to similarities in the amplitudes of orbital forcing. It has been difficult to compare the periods, however, because of the long duration of Stage 11 and a lack of detailed knowledge of any extreme climate events that may have occurred. Here we use the distinctive phasing between seasurface temperatures and the oxygen-isotope records of benthic foraminifera in the southeast Atlantic Ocean to stratigraphically align the Holocene interglacial with the first half of the Marine Isotope Stage 11 interglacial optimum. This alignment suggests that the second half of Marine Isotope Stage 11 should not be used as a reference for 'pre-anthropogenic' greenhouse-gas emissions. By compiling benthic carbon-isotope records from sites in the Atlantic Ocean on a single timescale, we also find that meridional overturning circulation strengthened about 415,000 years ago, at a time of high orbital obliquity. We propose that this mechanism transported heat to the high northern latitudes, inhibiting significant ice-sheet build-up and prolonging interglacial conditions. We suggest that this mechanism may have also prolonged other interglacial periods throughout the past 800,000 years.
Resumo:
The Precambrian basement beneath the Pechora Basin of northern Russia is known from deep (up to approx. 4.5 km) drill holes to be largely composed of Neoproterozoic successions, variously deformed and metamorphosed and intruded by magmatic suites of Vendian age. Presented here are new single- zircon, Pb-evaporation (Kober method) ages from eight intrusions across the Izhma, Pechora and Bolshezemel'skaya Zones, all from below the Lower Ordovician (locally Middle Cambrian) unconformity. The majority of the intrusions (six) yield remarkably similar ages of 550-560 Ma, apparently dating a widespread pulse of late- to post-tectonic magmatism. An early Vendian granite (618 Ma) has been identified in the northeasternmost region (Bolshezemel'skaya zone) and a Devonian granodiorite (380 Ma) in the Pechora Zone, where mid to late Palaeozoic magmatism has been previously reported. Evidence of inheritance in the zircon populations suggests the presence of Mesoproterozoic crust beneath the Neoproterozoic complexes.
Resumo:
The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the "greenhouse" of the early Eocene to the "icehouse" of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive d13C excursion known as carbon maximum 6 ("M6"), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the d13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.
Resumo:
Excess Thorium-230 (230Thxs) as a constant flux tracer is an essential tool for paleoceanographic studies, but its limitations for flux normalization are still a matter of debate. In regions of rapid sediment accumulation, it has been an open question if 230Thxs-normalized fluxes are biased by particle sorting effects during sediment redistribution. In order to study the sorting effect of sediment transport on 230Thxs, we analyzed the specific activity of 230Thxs in different particle size classes of carbonate-rich sediments from the South East Atlantic, and of opal-rich sediments from the Atlantic sector of the Southern Ocean. At both sites, we compare the 230Thxs distribution in neighboring high vs. low accumulation settings. Two grain-size fractionation methods are explored. We find that the 230Thxs distribution is strongly grain size dependent, and 50-90% of the total 230Thxs inventory is concentrated in fine material smaller than 10 µm, which is preferentially deposited at the high accumulation sites. This leads to an overestimation of the focusing factor Psi, and consequently to an underestimation of the vertical flux rate at such sites. The distribution of authigenic uranium indicates that fine organic-rich material has also been re-deposited from lateral sources. If the particle sorting effect is considered in the flux calculations, it reduces the estimated extent of sediment focusing. In order to assess the maximum effect of particle sorting on Psi, we present an extreme scenario, in which we assume a lateral sediment supply of only fine material (< 10 µm). In this case, the focusing factor of the opal-rich core would be reduced from Psi = 5.9 to Psi = 3.2. In a more likely scenario, allowing silt-sized material to be transported, Psi is reduced from 5.9 to 5.0 if particle sorting is taken into consideration. The bias introduced by particle sorting is most important for strongly focused sediments. Comparing 230Thxs-normalized mass fluxes biased by sorting effects with uncorrected mass fluxes, we suggest that 230Thxs-normalization is still a valid tool to correct for lateral sediment redistribution. However, differences in focusing factors between core locations have to be evaluated carefully, taking the grain size distributions into consideration.
Resumo:
Limited information on the East Antarctic Ice Sheet (EAIS) geometry during Marine Isotope Stage 3 (MIS 3; 60-25 ka) restricts our understanding of its behaviour during periods of climate and sea level change. Ice sheet models forced by global parameters suggest an expanded EAIS compared to the Holocene during MIS 3, but field evidence from East Antarctic coastal areas contradicts such modelling, and suggests that the ice sheet margins were no more advanced than at present. Here we present a new lake sediment record, and cosmogenic exposure results from bedrock, which confirm that Rauer Group (eastern Prydz Bay) was ice-free for much of MIS 3. We also refine the likely duration of the Last Glacial Maximum (LGM) glaciation in the region. Lacustrine and marine sediments from Rauer Group indicate the penultimate period of ice retreat predates 50 ka. The lacustrine record indicates a change from warmer/wetter conditions to cooler/drier conditions after ca. 35 ka. Substantive ice sheet re-advance, however, may not have occurred until much closer to 20 ka. Contemporary coastal areas were still connected to the sea during MIS 3, restricting the possible extent of grounded ice in Prydz Bay on the continental shelf. In contrast, relative sea levels (RSL) deduced from field evidence indicate an extra ice load averaging several hundred metres thicker ice across the Bay between 45 and 32 ka. Thus, ice must either have been thicker immediately inland (with a steeper ice profile), or there were additional ice domes on the shallow banks of the outer continental shelf. Further work is required to reconcile the differences between empirical evidence of past ice sheet histories, and the history predicted by ice sheet models from far-field temperature and sea level records.