Experimental data of CO2, CO3, Omega calcite saturation, pH values, alpha and epsilon fractionation factors, and Dd18O calctite-water


Autoria(s): Ziveri, Patrizia; Thoms, Silke; Probert, Ian; Geisen, Markus; Langer, Gerald
Data(s)

27/02/2012

Resumo

The oxygen isotopic composition (d18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO3]2- effect on d18O is universal for unicellular calcifying planktonic organisms. The slopes of the d18O/[CO3]2- relationships range between -0.0243 per mil/(µmol/kg) (calcareous dinoflagellate T. heimii) and the previously published -0.0022 per mil/(µmol/kg) (non-symbiotic planktonic foramifera Orbulina universa), while C. leptoporus has a slope of -0.0048 per mil/(µmol/kg). We present a simple conceptual model, based on the contribution of d18O-enriched [HCO3]- to the [CO3]2- pool in the calcifying vesicle, which can explain the [CO3]2- effect on d18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms. The large range in d18O/[CO3]2- slopes should possibly be explored as a means for paleoreconstruction of surface [CO3]2-, particularly through comparison of the response in ecologically similar planktonic organisms.

Formato

text/tab-separated-values, 192 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.808168

doi:10.1594/PANGAEA.808168

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Ziveri, Patrizia; Thoms, Silke; Probert, Ian; Geisen, Markus; Langer, Gerald (2012): A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms. Biogeosciences, 9, 1025-1032, doi:10.5194/bg-9-1025-2012

Palavras-Chave #Calcite saturation state; Carbonate ion; Carbon dioxide, partial pressure; Delta delta 18O; DFG-Schwerpunktprogramm 1158 - Antarktisforschung; DFG-SPP1158; Fractionation factor; Mediterranean Sea Acidification in a Changing Climate; MedSeA; pH; Species
Tipo

Dataset