889 resultados para vascular endothelial growth factor
Resumo:
The in vitro production of recombinant protein molecules has fostered a tremendous interest in their clinical application for treatment and support of cancer patients. Therapeutic proteins include monoclonal antibodies, interferons, and haematopoietic growth factors. Clinically established monoclonal antibodies include rituximab (targeting CD20-positive B-cell lymphomas), trastuzumab (active in HER-2 breast and gastric cancer), and bevacizumab (blocking tumor-induced angiogenesis through blockade of vascular-endothelial growth factor and its receptor). Interferons have lost much of their initial appeal, since equally or more effective treatments with more pleasant side effects have become available, for example in chronic myelogenous leukaemia or hairy cell leukaemia. The value of recombinant growth factors, notably granulocyte colony stimulating factor (G-CSF) and erythropoietin is rather in the field of supportive care than in targeted anti-cancer therapy. Adequately powered clinical phase III trials are essential to estimate the true therapeutic impact of these expensive compounds, with appropriate selection of clinically relevant endpoints and sufficient follow-up. Monoclonal antibodies, interferons, and growth factors must also, and increasingly so, be subjected to close scrutiny by appropriate cost-effectiveness analyses to ensure that their use results in good value for money. With these caveats and under the condition of their judicious clinical use, recombinant proteins have greatly enriched the therapeutic armamentarium in clinical oncology, and their importance is likely to grow even further.
Resumo:
Patients with recurrent high-grade glioma (HGG) have a poor prognosis and there is no defined standard of care. High levels of vascular endothelial growth factor (VEGF) expressed in HGG make the anti-VEGF monoclonal antibody bevacizumab (BEV) of particular interest.
Resumo:
High-dose chemotherapy (HDC) followed by autologous stem cell transplantation (ASCT) is used for the treatment of hemato-oncologic malignancies. In this study, we measured the effect of HDC/ASCT on plasma concentrations of antiangiogenic soluble vascular endothelial growth factor receptor 1 (sVEGFR1) and of leukapheresis products (LP) and patient serum on chick chorioallantoic (CAM) angiogenesis.
Resumo:
Hepatocellular carcinoma (HCC) is a common cause of cancer-related death. Sorafenib prolongs survival of patients with advanced disease and is approved for the systemic treatment of unresectable HCC. It possesses antiangiogenic and antiproliferative properties by way of inhibition of the receptor tyrosine kinases vascular endothelial growth factor receptor 2 (VEGFR-2) and platelet-derived growth factor receptor-beta 1/2 (PDGFR-β) and the kinase RAF. Sorafenib represents a candidate compound for adjuvant therapy in HCC patients. The aim of our study was to investigate whether sorafenib affects liver regeneration. C57BL6 mice received sorafenib orally at 30 mg/kg/day or its vehicle either for 14 days until the day before hepatectomy or starting the day after surgery or both. Animals were sacrificed 24, 72, and 120 hours after hepatectomy. Liver regeneration was calculated as a percent of initial liver weight. Bromodeoxyuridine (BrdU) incorporation and phospho-extracellular signal-regulated kinase (pERK1/2) were determined by immunohistochemistry on liver sections. VEGF-A, PDGF-BB, and hepatocyte growth factor (HGF) levels were measured in liver tissue homogenates. Histological analysis of scar tissue was performed. Treatment stopped 1 day before surgery had no impact on liver regeneration. Continuous sorafenib treatment and treatment started 1 day after surgery had statistically significant effects on liver regeneration at 120 hours compared to vehicle-treated control animals (72% ± 12 versus control 88% ± 15 and 70% ± 13 versus control 86% ± 5 at 120 hours, both P ≤ 0.02). BrdU incorporation showed decreased numbers of positive nuclei in both groups receiving sorafenib after surgery. Phospho-ERK levels were reduced in sorafenib-treated animals. An increase of VEGF-A levels was observed in mice receiving sorafenib. Wound-healing complications were observed in animals receiving sorafenib after surgery and confirmed on histological sections. CONCLUSION: This preclinical study shows that sorafenib did not impact on liver regeneration when ceased before surgery; however, administration after hepatectomy affected late liver regeneration.
Resumo:
Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.
Resumo:
Hyperreflective foci (HFs) are observable within the neurosensory retina in diabetic macular edema (DME) using spectral domain optical coherence tomography (SD-OCT). HFs have also been seen in wet age-related macular degeneration (AMD), although the origin is still unknown; however, they reduced significantly during anti-VEGF (vascular endothelial growth factor) therapy, and their baseline amount seemed to correlate with treatment success. In this study the behavior of HFs was evaluated during anti-VEGF therapy for DME.
Resumo:
Therapeutic over-expression of vascular endothelial growth factor (VEGF) can be used to treat ischemic conditions. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose in the microenvironment around each producing cell in vivo, which limits its clinical usefulness. The goal herein was to determine the cellular mechanisms by which physiologic and aberrant vessels are induced by over-expression of different VEGF doses in adult skeletal muscle. We took advantage of a well-characterized cell-based platform for controlled gene expression in skeletal muscle. Clonal populations of retrovirally transduced myoblasts were implanted in limb muscles of immunodeficient mice to homogeneously over-express two specific VEGF(164) levels, previously shown to induce physiologic and therapeutic or aberrant angiogenesis, respectively. Three independent and complementary methods (confocal microscopy, vascular casting and 3D-reconstruction of serial semi-thin sections) showed that, at both VEGF doses, angiogenesis took place without sprouting, but rather by intussusception, or vascular splitting. VEGF-induced endothelial proliferation without tip-cell formation caused an initial homogeneous enlargement of pre-existing microvessels, followed by the formation of intravascular transluminal pillars, hallmarks of intussusception. This was associated with increased flow and shear stress, which are potent triggers of intussusception. A similar process of enlargement without sprouting, followed by intussusception, was also induced by VEGF over-expression through a clinically relevant adenoviral gene therapy vector, without the use of transduced cells. Our findings indicate that VEGF over-expression, at doses that have been shown to induce functional benefit, induces vascular growth in skeletal muscle by intussusception rather than sprouting.
Resumo:
We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.
Resumo:
Vascular endothelial growth factor (VEGF) has potent angiogenic and neuroprotective effects in the ischemic brain. Its effect on axonal plasticity and neurological recovery in the post-acute stroke phase was unknown. Using behavioral tests combined with anterograde tract tracing studies and with immunohistochemical and molecular biological experiments, we examined effects of a delayed i.c.v. delivery of recombinant human VEGF(165), starting 3 days after stroke, on functional neurological recovery, corticorubral plasticity and inflammatory brain responses in mice submitted to 30 min of middle cerebral artery occlusion. We herein show that the slowly progressive functional improvements of motor grip strength and coordination, which are induced by VEGF, are accompanied by enhanced sprouting of contralesional corticorubral fibres that branched off the pyramidal tract in order to cross the midline and innervate the ipsilesional parvocellular red nucleus. Infiltrates of CD45+ leukocytes were noticed in the ischemic striatum of vehicle-treated mice that closely corresponded to areas exhibiting Iba-1+ activated microglia. VEGF attenuated the CD45+ leukocyte infiltrates at 14 but not 30 days post ischemia and diminished the microglial activation. Notably, the VEGF-induced anti-inflammatory effect of VEGF was associated with a downregulation of a broad set of inflammatory cytokines and chemokines in both brain hemispheres. These data suggest a link between VEGF's immunosuppressive and plasticity-promoting actions that may be important for successful brain remodeling. Accordingly, growth factors with anti-inflammatory action may be promising therapeutics in the post-acute stroke phase.
Resumo:
The antiinflammatory agent curcumin (diferuloylmethane) has a potential to mitigate cancer therapy-induced mucositis. We assessed the in vitro extent of its bactericidal activity and determined the kinetics of its antiinflammatory effect on pharyngeal cells. Bactericidal activity was assessed using the LIVE/DEAD® Kit after 4 h of exposure to curcumin (50-200 μM) in 18 oropharyngeal species commonly associated with bacteremia in febrile neutropenia. Moraxella catarrhalis or its outer membrane vesicles were used to determine the inhibitory effect of curcumin on bacteria-induced proinflammatory activity as determined by cytokine release into the supernatant of Detroit 562 pharyngeal cells using the Luminex® xMAP® technology. Curcumin exerted a concentration-dependent bactericidal effect on all 18 species tested. After 4 h at 200 μM, 12 species tested were completely killed. Preincubation of Detroit cells with 200 μM curcumin for 5 to 60 min resulted in complete suppression of the release of tumor necrosis factor-α, interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1, granulocyte macrophage-colony stimulating factor, and vascular endothelial growth factor. Fibroblast growth factor-2 and interferon-γ were not affected. Repetitive exposure to curcumin resulted in repetitive suppression of cytokine/chemokine expression lasting from 4 to 6 h. Through reduction of oral microbial density as well as suppression of inflammation cascades curcumin may prevent cancer therapy-induced oral mucositis, e.g., when applied as multiple daily mouth washes.
Resumo:
Introduction: Throughout follicular growth and subsequent corpus luteum formation the leukocyte number increases and follicular vascularisation changes. These processes are enhanced under exogenous stimulation with gonadotropins. Cytokines released by leukocytes contribute to further recruitment and vascularisation of the follicle, and they play an important role in regulating ovarian steroidogenesis by influencing theca and granulosa–lutein cell function. Changes in cytokine and vascular endothelial growth factor (VEGF) concentrations in the ovary as a consequence of gonadotropin stimulation may negatively influence oocyte quality. In this project we have compared the intrafollicular production of inflammatory cytokines and growth factors between natural IVF cycles (NC) and classical, gonadotropin-stimulated IVF cycles (gsIVF). Material and Methods: Serum on the day of oocyte retrieval and follicular fluid (FF) were collected in 37 NC and 39 gsIVF cycles. Thirteen women within this population underwent one NC and one gsIVF cycle each. A total of 14 cytokines from Bio-Plex panels I and II were determined in matched serum and FF samples using Luminex xMAP technology on the Bio-Plex(R) platform, using the serum protocol. Results: Tumour necrosis factor-alpha, RANTES, eotaxin and interferon-gamma-induced protein-10 levels were lower in FF than in serum, and thus not further investigated. Interleukin (IL)-6, -8, -10, -15, -18, monocyte chemotactic protein-1 (MCP-1), VEGF and leukaemia inhibitory factor (LIF) showed higher median concentrations in FF than in serum, indicating possible ovarian production. Moreover, most of these showed higher evels in the gsIVF than in the NC groups in the serum, but not in the follicular fluid. IL-8 was reduced in gsIVF cycles. Conclusion: The fact that serum but not FF levels of the studied cytokines were higher in the stimulated than in the natural cycles can be attributed to the increased number of active follicles present after controlled ovarian stimulation.
Resumo:
In adult skeletal muscle, abluminal sprouting or longitudinal splitting of capillaries can be initiated separately by muscle overload and elevated microcirculation shear stress respectively. In the present study, gene and protein expression patterns associated with the different forms of angiogenesis were examined using a targeted gene array (Superarray), validated by quantitative RT (reverse transcription)-PCR and immunoblots. Sprouting angiogenesis induced large changes in expression levels in genes associated with extracellular matrix remodelling, such as MMP-2 (matrix metalloproteinase-2), TIMP (tissue inhibitor of metalloproteinases), SPARC (secreted protein, acidic and rich in cysteine) and thrombospondin. Changes in neuropilin, midkine and restin levels, which may underpin changes in endothelial morphology, were seen during splitting angiogenesis. Up-regulation of VEGF (vascular endothelial growth factor), Flk-1, angiopoietin-2 and PECAM-1 (platelet/endothelial cell adhesion molecule-1) was seen in both forms of angiogenesis, representing a common angiogenic response of endothelial cells. In conclusion, the present study demonstrates that general angiogenic signals from growth factors can be influenced by the local microenvironment resulting in differing forms of capillary growth to produce a co-ordinated expansion of the vascular bed.
Resumo:
Colorectal cancer is the second leading cause of cancer death in Switzerland. The nihilism that dominated the treatment of these patients for decades has been replaced by a measure of enthusiasm, given recent therapeutic advances. New anticancer drugs such as irinotecan and oxaliplatin have changed the standard chemotherapy treatment of metastatic colorectal cancer. However, the real hype has come from molecular targeted therapy. Identification of cellular processes characteristic of colon cancer has permitted therapeutic targeting with favorable therapeutic index. Inhibition of the epidermal growth factor receptor in the clinic has provided proof of principle that interruption of signal transduction cascades in patients has therapeutic potential. Angiogenesis, especially the vascular endothelial growth factor pathway, has been proven to be another highly successful molecular target. In this article, we will review molecular targets, which are under active clinical investigation in colon cancer.
Resumo:
BACKGROUND: We compared ranibizumab--a recombinant, humanized, monoclonal antibody Fab that neutralizes all active forms of vascular endothelial growth factor A--with photodynamic therapy with verteporfin in the treatment of predominantly classic neovascular age-related macular degeneration. METHODS: During the first year of this 2-year, multicenter, double-blind study, we randomly assigned patients in a 1:1:1 ratio to receive monthly intravitreal injections of ranibizumab (0.3 mg or 0.5 mg) plus sham verteporfin therapy or monthly sham injections plus active verteporfin therapy. The primary end point was the proportion of patients losing fewer than 15 letters from baseline visual acuity at 12 months. RESULTS: Of the 423 patients enrolled, 94.3% of those given 0.3 mg of ranibizumab and 96.4% of those given 0.5 mg lost fewer than 15 letters, as compared with 64.3% of those in the verteporfin group (P<0.001 for each comparison). Visual acuity improved by 15 letters or more in 35.7% of the 0.3-mg group and 40.3% of the 0.5-mg group, as compared with 5.6% of the verteporfin group (P<0.001 for each comparison). Mean visual acuity increased by 8.5 letters in the 0.3-mg group and 11.3 letters in the 0.5-mg group, as compared with a decrease of 9.5 letters in the verteporfin group (P<0.001 for each comparison). Among 140 patients treated with 0.5 mg of ranibizumab, presumed endophthalmitis occurred in 2 patients (1.4%) and serious uveitis in 1 (0.7%). CONCLUSIONS: Ranibizumab was superior to verteporfin as intravitreal treatment of predominantly classic neovascular age-related macular degeneration, with low rates of serious ocular adverse events. Treatment improved visual acuity on average at 1 year. (ClinicalTrials.gov number, NCT00061594 [ClinicalTrials.gov].).
Resumo:
The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.