952 resultados para three phase
Resumo:
This report documents Phase III of a four-phase project. The goals of the project are to study the feasibility of using advanced technology from other industries to improve he efficiency and safety of winter highway maintenance vehicle operations, and to provide travelers with the level of service defined by policy during the winter season at the least cost to the taxpayers. The results of the first phase of the research were documented in the Concept Highway Maintenance Vehicle Final Report: Phase One dated April 1997, which describes the desirable functions of a concept maintenance vehicle and evaluates its feasibility. Phase I concluded by establishing the technologies that would be assembled and tested on the prototype vehicles in Phase II. The primary goals of phase II were to install the selected technologies on the prototype winter maintenance vehicles and to conduct proof of concept in advance of field evaluations planned for Phase III. This Phase III final report documents the work completed since the end of Phase II. During this time period, the Phase III work plan was completed and the redesigned friction meter was field tested. A vendor meeting was held to discuss future private sector participation and the new design for the Iowa vehicle. In addition, weather and roadway condition data were collected from the roadway weather information systems at selected sites in Iowa and Minnesota, for comparison to the vehicles' onboard temperature sensors. Furthermore, the team received new technology, such as the mobile Frensor unit, for bench testing and later installation.
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
We present an efficient numerical methodology for the 31) computation of incompressible multi-phase flows described by conservative phase-field models We focus here on the case of density matched fluids with different viscosity (Model H) The numerical method employs adaptive mesh refinements (AMR) in concert with an efficient semi-implicit time discretization strategy and a linear, multi-level multigrid to relax high order stability constraints and to capture the flow`s disparate scales at optimal cost. Only five linear solvers are needed per time-step. Moreover, all the adaptive methodology is constructed from scratch to allow a systematic investigation of the key aspects of AMR in a conservative, phase-field setting. We validate the method and demonstrate its capabilities and efficacy with important examples of drop deformation, Kelvin-Helmholtz instability, and flow-induced drop coalescence (C) 2010 Elsevier Inc. All rights reserved
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL(-1) (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT. PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study very large sizes, 483. A finite-size scaling analysis indicates that the data are compatible with the most economical scenario: a common transition temperature for spins and chiralities.
Resumo:
We perform numerical simulations, including parallel tempering, a four-state Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the critical temperature and the value of the critical exponents. Nevertheless, the extrapolation to infinite volume is hampered by strong scaling corrections. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the “random permutation” Potts glass.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"This report was prepared by University of Florida, Gainesville, Florida, under USAF Contract no. F 33615-67-C-1227."
Resumo:
We determine the phase diagram of the half-filled two-leg ladder both at weak and strong coupling, taking into account the Cu d(x)(2)-y(2) and the O p(x) and p(y) orbitals. At weak coupling, renormalization group flows are interpreted with the use of bosonization. Two different models with and without outer oxygen orbitals are examined. For physical parameters, and in the absence of the outer oxygen orbitals, the D-Mott phase arises; a dimerized phase appears when the outer oxygen atoms are included. We show that the circulating current phase that preserves translational symmetry does not appear at weak coupling. In the opposite strong-coupling atomic limit the model is purely electrostatic and the ground states may be found by simple energy minimization. The phase diagram so obtained is compared to the weak-coupling one.