943 resultados para teorema Weierstrass serie Fejer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Also numbered as its Mededeelingen deel 7-

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the proof of Lemma 3.1 in [1] we need to show that we may take the two points p and q with p ≠ q such that p+q+(b-2)g21(C′)∼2(q1+… +qb-1) where q1,…,qb-1 are points of C′, but in the paper [1] we did not show that p ≠ q. Moreover, we hadn't been able to prove this using the method of our paper [1]. So we must add some more assumption to Lemma 3.1 and rewrite the statements of our paper after Lemma 3.1. The following is the correct version of Lemma 3.1 in [1] with its proof.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study will present the results of an investigation of how the history of mathematics and theater can contribute to the construction of mathematical knowledge of students in the 9th year of elementary school, through the experience, preparation and execution of a play, beyond presentation of the script. This brings a historical approach, defining space and time of events, putting the reader and viewer to do the route in the biography of Thales of Miletus (624-546 a.C), creating situations that led to the study and discussion of the content related to the episode possible to measure the height of the pyramid Khufu and the Theorem of Thales. That said, the pedagogical proposal implemented in this work was based on theoretical and methodological assumptions of the History of Mathematics and Theatre, drawing upon authors such as Mendes (2006), Miguel (1993), Gutierre (2010), Desgrandes (2011), Cabral (2012). Regarding the methodological procedures used qualitative research because it responds to particular issues, analyzing and interpreting the data generated in the research field. As methodological tools we have used participant observation, the questionnaire given to the students, field diary and dissertativos texts produced by students. The processing and analysis of data collected through the questionnaires were organized, classified and quantified in tables and graphs for easy viewing, interpretation, understanding and analysis of data. Data analysis corroborated our hypothesis and contributed to improving the use and display of the play as a motivating activity in mathematics classrooms. Thus, we consider that the script developed, ie the educational product proposed will bring significant contributions to the teaching of Mathematics in Primary Education

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dark matter is a fundamental ingredient of the modern Cosmology. It is necessary in order to explain the process of structures formation in the Universe, rotation curves of galaxies and the mass discrepancy in clusters of galaxies. However, although many efforts, in both aspects, theoretical and experimental, have been made, the nature of dark matter is still unknown and the only convincing evidence for its existence is gravitational. This rises doubts about its existence and, in turn, opens the possibility that the Einstein’s gravity needs to be modified at some scale. We study, in this work, the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides en alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations and find their solutions to a spherical system of identical and collisionless point particles. Then, we took into account the collisionless relativistic Boltzmann equation and using some approximations and assumptions for weak gravitational field, we derived the generalized virial theorem in the framework of EBI gravity. In order to compare the predictions of EBI gravity with astrophysical observations we estimated the order of magnitude of the geometric mass, showing that it is compatible with present observations. Finally, considering a power law for the density of galaxies in the cluster, we derived expressions for the radial velocity dispersion of the galaxies, which can be used for testing some features of the EBI gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dark matter is a fundamental ingredient of the modern Cosmology. It is necessary in order to explain the process of structures formation in the Universe, rotation curves of galaxies and the mass discrepancy in clusters of galaxies. However, although many efforts, in both aspects, theoretical and experimental, have been made, the nature of dark matter is still unknown and the only convincing evidence for its existence is gravitational. This rises doubts about its existence and, in turn, opens the possibility that the Einstein’s gravity needs to be modified at some scale. We study, in this work, the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides en alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations and find their solutions to a spherical system of identical and collisionless point particles. Then, we took into account the collisionless relativistic Boltzmann equation and using some approximations and assumptions for weak gravitational field, we derived the generalized virial theorem in the framework of EBI gravity. In order to compare the predictions of EBI gravity with astrophysical observations we estimated the order of magnitude of the geometric mass, showing that it is compatible with present observations. Finally, considering a power law for the density of galaxies in the cluster, we derived expressions for the radial velocity dispersion of the galaxies, which can be used for testing some features of the EBI gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente tesi è suddivisa in due parti: nella prima parte illustriamo le definizioni e i relativi risultati della teoria delle tabelle di Young, introdotte per la prima volta nel 1900 da Alfred Young; mentre, nella seconda parte, diamo la nozione di numeri Euleriani e di Polinomi Euleriani. Nel primo capitolo abbiamo introdotto i concetti di diagramma di Young e di tabelle di Young standard. Inoltre, abbiamo fornito la formula degli uncini per contare le tabelle di Young della stessa forma. Il primo capitolo è focalizzato sul teorema di Robinson-Schensted, che stabilisce una corrispondenza biunivoca tra le permutazioni di Sn e le coppie di tabelle di Young standard della stessa forma. Ne deriva un'importante conseguenza che consiste nel poter trovare in modo efficiente la massima sottosequenza crescente di una permutazione. Una volta definite le operazioni di evacuazione e "le jeu de taquin" relative alle tabelle di Young, illustriamo una serie di risultati riferibili alla corrispondenza biunivoca R-S che variano in base alla permutazione che prendiamo in considerazione. In particolare, enunciamo il teorema di simmetria di M.P.Schüztenberger, che dimostriamo attraverso la costruzione geometrica di Viennot. Nel secondo capitolo, dopo aver dato la definizione di discesa di una permutazione, descriviamo altre conseguenze della corrispondenza biunivoca R-S: vediamo così che esiste una relazione tra le discese di una permutazione e la coppia di tabelle di Young associata. Abbiamo trattato approfonditamente i numeri Euleriani, indicati con A(n,k) = ]{σ ∈ Sn;d(σ) = k}, dove d(σ) indica il numero di discese di una permutazione. Descriviamo le loro proprietà e simmetrie e vediamo che sono i coefficienti di particolari polinomi, detti Polinomi Euleriani. Infine, attraverso la nozione di eccedenza di una permutazione e la descrizione della mappa di Foata arriviamo a dimostrare un importante risultato: A(n,k) conta anche il numero di permutazioni di Sn con k eccedenze.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi riportiamo le definizioni ed i risultati principali relativi alla corrispondenza tra le successioni di polinomi di tipo binomiale (particolari basi dello spazio dei polinomi a coefficienti reali) e gli operatori delta, cioè operatori lineari sullo spazio dei polinomi che commutano con gli operatori di traslazione e il cui nucleo è costituito dai polinomi costanti. Nel capitolo 1 richiamiamo i concetti fondamentali sull'algebra delle serie formali e definiamo l'algebra degli operatori lineari invarianti per traslazione, dimostrando in particolare l'isomorfismo tra queste algebre. Nel capitolo 2, dopo aver dimostrato l'unicità della successione di base relativa ad un operatore delta, ricaviamo come esempio le successioni di base di tre operatori delta, che useremo durante tutto il capitolo: l'operatore derivata, l'operatore di differenza in avanti e l'operatore di differenza all'indietro. Arriviamo quindi a dimostrare un importante risultato, il Primo Teorema di Sviluppo, in cui facciamo vedere come le potenze di un operatore delta siano una base per l'algebra degli operatori invarianti per traslazione. Introducendo poi le successioni di Sheffer, possiamo dimostrare anche il Secondo Teorema di Sviluppo in cui esplicitiamo l'azione di un operatore invariante per traslazione su un polinomio, tramite un operatore delta fissato e una sua successione di Sheffer. Nell'ultima parte della tesi presentiamo i formalismi e alcune semplici operazioni del calcolo umbrale, che useremo per determinare le cosiddette costanti di connessione, ovvero le costanti che definiscono lo sviluppo di una successione binomiale in funzione di un'altra successione binomiale usata come base dello spazio dei polinomi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le th eor eme de Riemann-Roch originale a rme que pour tout morphisme propre f : Y ! X entre vari et es quasi-projectifs lisses sur un corps, et tout el ement a 2 K0(Y ) du groupe de Grothendieck des br es vectoriels on a ch(f!(a)) = f {u100000}Td(Tf ) ch(a) (cf. [BS58]). Ici ch est le caract ere de Chern, Td(Tf ) est la classe de Todd du br e tangent relative et f et f! sont les images directes de l'anneau de Chow et K0 respectivement. Apr es, Baum, Fulton et MacPherson ont d emontr e en [BFM75] le th eor eme de Riemann-Roch pour des morphismes localement intersection compl ete entre des sch emas alg ebriques (sch emas s epar es et localement de type ni sur un corps) projectifs et singuli eres. En [FG83] Fulton et Gillet ont d emontr e le th eor eme sans hypoth eses projectifs. L'extension a la th eorie K sup erieure pour des sch emas r eguli eres sur une base fut d emontr e par Gillet en [Gil81]. Le th eor eme de Riemann-Roch qu'il prouve est pour des morphismes projectifs entre des sch emas lisses et quasi-projectifs. Donc, dans le cas des sch emas sur un corps, le r esultat de Gillet n'inclus pas le th eor eme de [BFM75]. La plus grande g en eralisation du th eor eme de Riemann-Roch que je connais est [D eg14] et [HS15], o u D eglise et Holmstrom-Scholbach obtiennent ind ependamment le th eor eme de Riemann- Roch pour la K-th eorie sup erieure et les morphismes projectifs lic entre sch emas r eguli eres sur une base noetherienne de dimension nie... NOTA 520 8 El teorema de Riemann-Roch original de Grothendieck a rma que para todo mor smo propio f : Y ! X, entre variedades irreducibles quasiproyectivas lisas sobre un cuerpo, y todo elemento a 2 K0(Y ) del grupo de Grothendieck de brados vectoriales se satisface la relaci on ch(f!(a)) = f {u100000}Td(Tf ) ch(a) (cf. [BS58]). Recu erdese que ch denota el car acter de Chern, Td(Tf ) la clase de Todd del brado tangente relativo y f y f! las im agenes directas en el anillo de Chow y K0 respectivamente. M as tarde Baum, Fulton MacPherson probaron en [BFM75] el teorema de Riemann-Roch para mor smos localmente intersecci on completa entre esquemas algebraicos (es decir, esquemas separados localmente de tipo nito sobre cuerpo) proyectivos singulares. En [FG83] Fulton y Gillet probaron el teorema sin hip otesis proyectivas. La notable extensi on a la teor a K superior para esquemas regulares sobre una base fue probada por Gillet en [Gil81]. El teorema de Riemann-Roch all probado es para mor smos proyectivos entre esquemas lisos quasiproyectivos. Sin embargo, obs ervese que en el caso de esquemas sobre cuerpo el resultado de Gillet no recupera el teorema de [BFM75]. La mayor generalizaci on del teorema de Riemann-Roch que yo conozco es [D eg14] y [HS15] donde D eglise y Holmstrom-Scholbach obtuvieron independientemente el teorema de Riemann-Roch para teor a K superior y mor smos proyectivos lic entre esquemas regulares sobre una base noetheriana nito dimensional...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After defining the “enunciative scheme” (sentence type) as a communicative unit, the imperative is characterized as a morphologized modality of appellative kind used when the following conditions occur: appellative meaning, 2nd person, future tense and absence of negation. In Spanish, any variation of any of these requirements determines that the subjunctive is used. We reject the idea that the imperative is a variant of subjunctive specialized in appellative function and that both modes share a desiderative morpheme. Working in this way means attributing to a morphological category of the verb a property that actually corresponds to the enunciative schemes (sentence types). We propose to integrate the imperative and subjunctive in the framework of what we call the “desiderative-appellative space”. This “space” brings together various grammatical or grammaticalized means based on the imperative and the subjunctive. Semantically, it is organized around a component of desirability (action appears as desirable) that, by varying several factors, configures a route that goes from a center (the imperative) to a periphery (the expression of desire).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo elaborato viene proposto il sottotitolaggio di una puntata della serie tedesca "Tatortreiniger". Questa puntata ha la caratteristica di essere in rima. Si commentano le scelte traduttive e inoltre si analizzano le tecniche adoperate nel sottotitolaggio e le soluzioni adottate durante questo processo. Inoltre trattandosi di un episodio di genere umoristico si analizza il problema del tradurre l'umorismo da una lingua ad un'altra.