862 resultados para supervised classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Suomen happamien sulfaattimaiden kansainvälinen luokittelu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

111 patients with acute leukemia, including 29 children, were classified according to the surface markers and cytochemistry of their blasts. The acute leukemias were separated into two majors groups (lymphoid and non-lymphoid) depending on the presence or absence of specific lymphoid markers. On the basis of these criteria a correlation of 94% with the hematological diagnosis was obtained. Acute lymphoblastic leukemia (ALL) was divisible into three sub-groups: 11 cases expressing T-cell specific markers were classified as T-ALL and 33 cases expressing the common ALL antigen (CALLA) as c-ALL. 18 of the latter expressed an additional marker, DSA (Daudi surface antigen), splitting c-ALL cases in two subgroups. Cytochemistry of the cases lacking specific surface markers (n = 67) served to diagnose 41 acute myeloid leukemia (AML) cases and 8 monoblastic leukemias. The remaining 18 cases could not be classified. The presence of absence of HLD-DR (Ia) antigens served to subdivide AML into two major subgroups. The prognostic significance of these new diagnostic splits is under active study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Extensive research exists estimating the effect hazardous alcohol¦use on morbidity and mortality, but little research quantifies the association between¦alcohol consumption and utility scores in patients with alcohol dependence.¦In the context of comparative research, the World Health Organisation (WHO)¦proposed to categorise the risk for alcohol-related acute and chronic harm according¦to patients' average daily alcohol consumption. OBJECTIVES: To estimate utility¦scores associated with each category of the WHO drinking risk-level classification¦in patients with alcohol dependence (AD). METHODS: We used data from¦CONTROL, an observational cohort study including 143 AD patients from the Alcohol¦Treatment Center at Lausanne University Hospital, followed for 12 months.¦Average daily alcohol consumption was assessed monthly using the Timeline Follow-¦back method and patients were categorised according to the WHO drinking¦risk-level classification: abstinent, low, medium, high and very high. Other measures¦as sociodemographic characteristics and utility scores derived from the EuroQoL¦5-Dimensions questionnaire (EQ-5D) were collected every three months.¦Mixed models for repeated measures were used to estimate mean utility scores¦associated with WHO drinking risk-level categories. RESULTS: A total of 143 patients¦were included and the 12-month follow-up permitting the assessment of¦1318 person-months. At baseline the mean age of the patients was 44.6 (SD 11.8)¦and the majority of patients was male (63.6%). Using repeated measures analysis,¦utility scores decreased with increasing drinking levels, ranging from 0.80 in abstinent¦patients to 0.62 in patients with very high risk drinking level (p_0.0001).¦CONCLUSIONS: In this sample of patients with alcohol dependence undergoing¦specialized care, utility scores estimated from the EQ-5D appeared to substantially¦and consistently vary according to patients' WHO drinking level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD34/QBEND10 immunostaining has been assessed in 150 bone marrow biopsies (BMB) including 91 myelodysplastic syndromes (MDS), 16 MDS-related AML, 25 reactive BMB, and 18 cases where RA could neither be established nor ruled out. All cases were reviewed and classified according to the clinical and morphological FAB criteria. The percentage of CD34-positive (CD34 +) hematopoietic cells and the number of clusters of CD34+ cells in 10 HPF were determined. In most cases the CD34+ cell count was similar to the blast percentage determined morphologically. In RA, however, not only typical blasts but also less immature hemopoietic cells lying morphologically between blasts and promyelocytes were stained with CD34. The CD34+ cell count and cluster values were significantly higher in RA than in BMB with reactive changes (p<0.0001 for both), in RAEB than in RA (p=0.0006 and p=0.0189, respectively), in RAEBt than in RAEB (p=0.0001 and p=0.0038), and in MDS-AML than in RAEBt (p<0.0001 and p=0.0007). Presence of CD34+ cell clusters in RA correlated with increased risk of progression of the disease. We conclude that CD34 immunostaining in BMB is a useful tool for distinguishing RA from other anemias, assessing blast percentage in MDS cases, classifying them according to FAB, and following their evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Several studies have established Glioblastoma Multiforme (GBM) prognostic and predictive models based on age and Karnofsky Performance Status (KPS), while very few studies evaluated the prognostic and predictive significance of preoperative MR-imaging. However, to date, there is no simple preoperative GBM classification that also correlates with a highly prognostic genomic signature. Thus, we present for the first time a biologically relevant, and clinically applicable tumor Volume, patient Age, and KPS (VAK) GBM classification that can easily and non-invasively be determined upon patient admission. METHODS: We quantitatively analyzed the volumes of 78 GBM patient MRIs present in The Cancer Imaging Archive (TCIA) corresponding to patients in The Cancer Genome Atlas (TCGA) with VAK annotation. The variables were then combined using a simple 3-point scoring system to form the VAK classification. A validation set (N = 64) from both the TCGA and Rembrandt databases was used to confirm the classification. Transcription factor and genomic correlations were performed using the gene pattern suite and Ingenuity Pathway Analysis. RESULTS: VAK-A and VAK-B classes showed significant median survival differences in discovery (P = 0.007) and validation sets (P = 0.008). VAK-A is significantly associated with P53 activation, while VAK-B shows significant P53 inhibition. Furthermore, a molecular gene signature comprised of a total of 25 genes and microRNAs was significantly associated with the classes and predicted survival in an independent validation set (P = 0.001). A favorable MGMT promoter methylation status resulted in a 10.5 months additional survival benefit for VAK-A compared to VAK-B patients. CONCLUSIONS: The non-invasively determined VAK classification with its implication of VAK-specific molecular regulatory networks, can serve as a very robust initial prognostic tool, clinical trial selection criteria, and important step toward the refinement of genomics-based personalized therapy for GBM patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brazilian System of Soil Classification (SiBCS) is a taxonomic system, open and in permanent construction, as new knowledge on Brazilian soils is obtained. The objective of this study was to characterize the chemical, physical, morphological, micro-morphological and mineralogical properties of four pedons of Oxisols in a highland toposequence in the upper Jequitinhonha Valley, emphasizing aspects of their genesis, classification and landscape development. The pedons occupy the following slope positions: summit - Red Oxisol (LV), mid slope (upper third) - Yellow-Red Oxisol (LVA), lower slope (middle third)- Yellow Oxisol (LA) and bottom of the valley (lowest third) - "Gray Oxisol" ("LAC"). These pedons were described and sampled for characterization in chemical and physical routine analyses. The total Fe, Al and Mn contents were determined by sulfuric attack and the Fe, Al and Mn oxides in dithionite-citrate-bicarbonate and oxalate extraction. The mineralogy of silicate clays was identified by X ray diffraction and the Fe oxides were detected by differential X ray diffraction. Total Ti, Ga and Zr contents were determined by X ray fluorescence spectrometry. The "LAC" is gray-colored and contains significant fragments of structure units in the form of a dense paste, characteristic of a gleysoil, in the horizons A and BA. All pedons are very clayey, dystrophic and have low contents of available P and a pH of around 5. The soil color was related to the Fe oxide content, which decreased along the slope. The decrease of crystalline and low- crystalline Fe along the slope confirmed the loss of Fe from the "LAC". Total Si increased along the slope and total Al remained constant. The clay fraction in all pedons was dominated by kaolinite and gibbsite. Hematite and goethite were identified in LV, low-intensity hematite and goethite in LVA, goethite in LA. In the "LAC", no hematite peaks and goethite were detected by differential X ray diffraction. The micro-morphology indicated prevalence of granular microstructure and porosity with complex stacking patterns.. The soil properties in the toposequence converged to a single soil class, the Oxisols, derived from the same source material. The landscape evolution and genesis of Oxisols of the highlands in the upper Jequitinhonha Valley are related to the evolution of the drainage system and the activity of excavating fauna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the upper Jequitinhonha valley, state of Minas Gerais, Brazi, there are large plane areas known as "chapadas", which are separated by areas dissected by tributaries of the Jequitinhonha and Araçuaí rivers. These dissected areas have a surface drainage system with tree, shrub, and grass vegetation, more commonly known as "veredas", i.e., palm swamps. The main purpose of this study was to characterize soil physical, chemical and morphological properties of a representative toposequence in the watershed of the Vereda Lagoa do Leandro, a swamp near Minas Novas, MG, on "chapadas", the highlands of the Alto Jequitinhonha region Different soil types are observed in the landscape: at the top - Typic Haplustox (LVA), in the middle slope - Xanthic Haplustox (LA), at the footslope - Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC") and, at the bottom of the palm swamp - Typic Albaquult (GXbd). These soils were first morphologically described; samples of disturbed and undisturbed soils were collected from all horizons and subhorizons, to evaluate their essential physical and chemical properties, by means of standard determination of Fe, Al, Mn, Ti and Si oxides after sulfuric extraction. The contents of Fe, Al and Mn, extracted with dithionite-citrate-bicarbonate and oxalate treatments, were also determined. In the well-drained soils of the slope positions, the typical morphological, physical and chemical properties of Oxisols were found. The GXbd sample, from the bottom of the palm swamp, is grayish and has high texture gradient (B/A) and massive structure. The reduction of the proportion of crystalline iron compounds and the low crystallinity along the slope confirmed the loss of iron during pedogenesis, which is reflected in the current soil color. The Si and Al contents were lowest in the "LAC" soil. There was a decrease of the Fe2O3/TiO2 ratio downhill, indicating progressive drainage restriction along the toposequence. The genesis and all physical and chemical properties of the soils at the footslope and the bottom of the palm swamp of the "chapadas" of the Alto Jequitinhonha region are strongly influenced by the occurrence of ground water on the surface or near the surface all year long, at present and/or in the past. Total concentrations of iron oxides, Fe d and Fe o in soils of the toposequence studied are related to the past and/or present soil colors and drainage conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La présente étude est à la fois une évaluation du processus de la mise en oeuvre et des impacts de la police de proximité dans les cinq plus grandes zones urbaines de Suisse - Bâle, Berne, Genève, Lausanne et Zurich. La police de proximité (community policing) est à la fois une philosophie et une stratégie organisationnelle qui favorise un partenariat renouvelé entre la police et les communautés locales dans le but de résoudre les problèmes relatifs à la sécurité et à l'ordre public. L'évaluation de processus a analysé des données relatives aux réformes internes de la police qui ont été obtenues par l'intermédiaire d'entretiens semi-structurés avec des administrateurs clés des cinq départements de police, ainsi que dans des documents écrits de la police et d'autres sources publiques. L'évaluation des impacts, quant à elle, s'est basée sur des variables contextuelles telles que des statistiques policières et des données de recensement, ainsi que sur des indicateurs d'impacts construit à partir des données du Swiss Crime Survey (SCS) relatives au sentiment d'insécurité, à la perception du désordre public et à la satisfaction de la population à l'égard de la police. Le SCS est un sondage régulier qui a permis d'interroger des habitants des cinq grandes zones urbaines à plusieurs reprises depuis le milieu des années 1980. L'évaluation de processus a abouti à un « Calendrier des activités » visant à créer des données de panel permettant de mesurer les progrès réalisés dans la mise en oeuvre de la police de proximité à l'aide d'une grille d'évaluation à six dimensions à des intervalles de cinq ans entre 1990 et 2010. L'évaluation des impacts, effectuée ex post facto, a utilisé un concept de recherche non-expérimental (observational design) dans le but d'analyser les impacts de différents modèles de police de proximité dans des zones comparables à travers les cinq villes étudiées. Les quartiers urbains, délimités par zone de code postal, ont ainsi été regroupés par l'intermédiaire d'une typologie réalisée à l'aide d'algorithmes d'apprentissage automatique (machine learning). Des algorithmes supervisés et non supervisés ont été utilisés sur les données à haute dimensionnalité relatives à la criminalité, à la structure socio-économique et démographique et au cadre bâti dans le but de regrouper les quartiers urbains les plus similaires dans des clusters. D'abord, les cartes auto-organisatrices (self-organizing maps) ont été utilisées dans le but de réduire la variance intra-cluster des variables contextuelles et de maximiser simultanément la variance inter-cluster des réponses au sondage. Ensuite, l'algorithme des forêts d'arbres décisionnels (random forests) a permis à la fois d'évaluer la pertinence de la typologie de quartier élaborée et de sélectionner les variables contextuelles clés afin de construire un modèle parcimonieux faisant un minimum d'erreurs de classification. Enfin, pour l'analyse des impacts, la méthode des appariements des coefficients de propension (propensity score matching) a été utilisée pour équilibrer les échantillons prétest-posttest en termes d'âge, de sexe et de niveau d'éducation des répondants au sein de chaque type de quartier ainsi identifié dans chacune des villes, avant d'effectuer un test statistique de la différence observée dans les indicateurs d'impacts. De plus, tous les résultats statistiquement significatifs ont été soumis à une analyse de sensibilité (sensitivity analysis) afin d'évaluer leur robustesse face à un biais potentiel dû à des covariables non observées. L'étude relève qu'au cours des quinze dernières années, les cinq services de police ont entamé des réformes majeures de leur organisation ainsi que de leurs stratégies opérationnelles et qu'ils ont noué des partenariats stratégiques afin de mettre en oeuvre la police de proximité. La typologie de quartier développée a abouti à une réduction de la variance intra-cluster des variables contextuelles et permet d'expliquer une partie significative de la variance inter-cluster des indicateurs d'impacts avant la mise en oeuvre du traitement. Ceci semble suggérer que les méthodes de géocomputation aident à équilibrer les covariables observées et donc à réduire les menaces relatives à la validité interne d'un concept de recherche non-expérimental. Enfin, l'analyse des impacts a révélé que le sentiment d'insécurité a diminué de manière significative pendant la période 2000-2005 dans les quartiers se trouvant à l'intérieur et autour des centres-villes de Berne et de Zurich. Ces améliorations sont assez robustes face à des biais dus à des covariables inobservées et covarient dans le temps et l'espace avec la mise en oeuvre de la police de proximité. L'hypothèse alternative envisageant que les diminutions observées dans le sentiment d'insécurité soient, partiellement, un résultat des interventions policières de proximité semble donc être aussi plausible que l'hypothèse nulle considérant l'absence absolue d'effet. Ceci, même si le concept de recherche non-expérimental mis en oeuvre ne peut pas complètement exclure la sélection et la régression à la moyenne comme explications alternatives. The current research project is both a process and impact evaluation of community policing in Switzerland's five major urban areas - Basel, Bern, Geneva, Lausanne, and Zurich. Community policing is both a philosophy and an organizational strategy that promotes a renewed partnership between the police and the community to solve problems of crime and disorder. The process evaluation data on police internal reforms were obtained through semi-structured interviews with key administrators from the five police departments as well as from police internal documents and additional public sources. The impact evaluation uses official crime records and census statistics as contextual variables as well as Swiss Crime Survey (SCS) data on fear of crime, perceptions of disorder, and public attitudes towards the police as outcome measures. The SCS is a standing survey instrument that has polled residents of the five urban areas repeatedly since the mid-1980s. The process evaluation produced a "Calendar of Action" to create panel data to measure community policing implementation progress over six evaluative dimensions in intervals of five years between 1990 and 2010. The impact evaluation, carried out ex post facto, uses an observational design that analyzes the impact of the different community policing models between matched comparison areas across the five cities. Using ZIP code districts as proxies for urban neighborhoods, geospatial data mining algorithms serve to develop a neighborhood typology in order to match the comparison areas. To this end, both unsupervised and supervised algorithms are used to analyze high-dimensional data on crime, the socio-economic and demographic structure, and the built environment in order to classify urban neighborhoods into clusters of similar type. In a first step, self-organizing maps serve as tools to develop a clustering algorithm that reduces the within-cluster variance in the contextual variables and simultaneously maximizes the between-cluster variance in survey responses. The random forests algorithm then serves to assess the appropriateness of the resulting neighborhood typology and to select the key contextual variables in order to build a parsimonious model that makes a minimum of classification errors. Finally, for the impact analysis, propensity score matching methods are used to match the survey respondents of the pretest and posttest samples on age, gender, and their level of education for each neighborhood type identified within each city, before conducting a statistical test of the observed difference in the outcome measures. Moreover, all significant results were subjected to a sensitivity analysis to assess the robustness of these findings in the face of potential bias due to some unobserved covariates. The study finds that over the last fifteen years, all five police departments have undertaken major reforms of their internal organization and operating strategies and forged strategic partnerships in order to implement community policing. The resulting neighborhood typology reduced the within-cluster variance of the contextual variables and accounted for a significant share of the between-cluster variance in the outcome measures prior to treatment, suggesting that geocomputational methods help to balance the observed covariates and hence to reduce threats to the internal validity of an observational design. Finally, the impact analysis revealed that fear of crime dropped significantly over the 2000-2005 period in the neighborhoods in and around the urban centers of Bern and Zurich. These improvements are fairly robust in the face of bias due to some unobserved covariate and covary temporally and spatially with the implementation of community policing. The alternative hypothesis that the observed reductions in fear of crime were at least in part a result of community policing interventions thus appears at least as plausible as the null hypothesis of absolutely no effect, even if the observational design cannot completely rule out selection and regression to the mean as alternative explanations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove for any pure three-quantum-bit state the existence of local bases which allow one to build a set of five orthogonal product states in terms of which the state can be written in a unique form. This leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely characterized by the five entanglement parameters. It leads to a complete classification of the three-quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all entanglement between the other two parties.