990 resultados para spacing effect
Resumo:
We conducted a clinical trial to compare the molecular and cellular responses of human melanocytes and keratinocytes in vivo to solar-simulated ultraviolet radiation (SSUVR) in 57 Caucasian participants grouped according to MC1R genotype. We found that, on average, the density of epidermal melanocytes 14 days after exposure to 2 minimal erythemal dose (MED) SSUVR was twofold higher than baseline (unirradiated) skin. However, the change in epidermal melanocyte counts among people carrying germline MC1R variants (97% increase) was significantly less than those with wild-type MC1R (164% increase; P = 0.01). We also found that sunscreen applied to the skin before exposure to 2 MED SSUVR completely blocked the effects of DNA damage, p53 induction, and cellular proliferation in both melanocytes and keratinocytes.
Resumo:
This study investigated Nrf2-activating properties of a coffee blend combining raw coffee bean constituents with 5-O-caffeoylquinic acid (CGA) as a lead component with typical roasting products such as N-methylpyridinium (NMP). In cell culture (HT29) the respective coffee extract (CN-CE) increased nuclear Nrf2 translocation and enhanced the transcription of ARE-dependent genes as exemplified for NAD(P)H:quinone oxidoreductase and glutathione-S-transferase (GST)A1, reflected in the protein level by an increase in GST enzyme activity. In a pilot human intervention study (29 healthy volunteers), daily consumption of 750 mL of CN-coffee for 4 weeks increased Nrf2 transcription in peripheral blood lymphocytes on average. However, the transcriptional response pattern of Nrf2/ARE-dependent genes showed substantial interindividual variations. The presence of SNPs in the Nrf2-promoter, reported recently, as well as the detection of GSTT1*0 (null) genotypes in the study collective strengthens the hypothesis that coffee acts as a modulator of Nrf2-dependent gene response in humans, but genetic polymorphisms play an important role in the individual response pattern.
Resumo:
Saccharification of sugarcane bagasse pretreated at the pilot-scale with different processes (in combination with steam-explosion) was evaluated. Maximum glucan conversion with Celluclast 1.5 L (15–25 FPU/g glucan) was in the following order: glycerol/HCl > HCl > H2SO4 > NaOH, with the glycerol system achieving ∼100% conversion. Surprisingly, the NaOH substrate achieved optimum saccharification with only 8 FPU/g glucan. Glucan conversions (3.6–6%) obtained with mixtures of endo-1,4-β-glucanase (EG) and β-glucosidase (βG) for the NaOH substrate were 2–6 times that of acid substrates. However, glucan conversions (15–60%) obtained with mixtures of cellobiohydrolase (CBH I) and βG on acidified glycerol substrate were 10–30% higher than those obtained for NaOH and acid substrates. The susceptibility of the substrates to enzymatic saccharification was explained by their physical and chemical attributes. Acidified glycerol pretreatment offers the opportunity to simplify the complexity of enzyme mixtures required for saccharification of lignocellulosics.
Resumo:
The population of Norfolk Island, located off the eastern coast of Australia, possesses an unusual and fascinating history. Most present-day islanders are related to a small number of the 'Bounty' mutineer founders. These founders consisted of Caucasian males and Polynesian females and led to an admixed present-day population. By examining a single large pedigree of 5742 individuals, spanning >200 years, we analyzed the influence of admixture and founder effect on various cardiovascular disease (CVD)-related traits. On account of the relative isolation of the population, on average one-third of the genomes of present-day islanders (single large pedigree individuals) is derived from 17 initial founders. The proportion of Polynesian ancestry in the present-day individuals was found to significantly influence total triglycerides, body mass index, systolic blood pressure and diastolic blood pressure. For various cholesterol traits, the influence of ancestry was less marked but overall the direction of effect for all CVD-related traits was consistent with Polynesian ancestry conferring greater CVD risk. Marker-derived homozygosity was computed and agreed with measures of inbreeding derived from pedigree information. Founder effect (inbreeding and marker-derived homozygosity) significantly influenced height. In conclusion, both founder effect and extreme admixture have substantially influenced the genetic architecture of a variety of CVD-related traits in this population.
Resumo:
Selenium (Se) is an essential trace element and the clinical consequences of Se deficiency have been well-documented. Se is primarily obtained through the diet and recent studies have suggested that the level of Se in Australian foods is declining. Currently there is limited data on the Se status of the Australian population so the aim of this study was to determine the plasma concentration of Se and glutathione peroxidase (GSH-Px), a well-established biomarker of Se status. Furthermore, the effect of gender, age and presence of cardiovascular disease (CVD) was also examined. Blood plasma samples from healthy subjects (140 samples, mean age = 54 years; range, 20-86 years) and CVD patients (112 samples, mean age = 67 years; range, 40-87 years) were analysed for Se concentration and GSH-Px activity. The results revealed that the healthy Australian cohort had a mean plasma Se level of 100.2 +/- 1.3 microg Se/L and a mean GSH-Px activity of 108.8 +/- 1.7 U/L. Although the mean value for plasma Se reached the level required for optimal GSH-Px activity (i.e. 100 microg Se/L), 47% of the healthy individuals tested fell below this level. Further evaluation revealed that certain age groups were more at risk of a lowered Se status, in particular, the oldest age group of over 81 years (females = 97.6 +/- 6.1 microg Se/L; males = 89.4 +/- 3.8 microg Se/L). The difference in Se status between males and females was not found to be significant. The presence of CVD did not appear to influence Se status, with the exception of the over 81 age group, which showed a trend for a further decline in Se status with disease (plasma Se, 93.5 +/- 3.6 microg Se/L for healthy versus 88.2 +/- 5.3 microg Se/L for CVD; plasma GSH-Px, 98.3 +/- 3.9 U/L for healthy versus 87.0 +/- 6.5 U/L for CVD). These findings emphasise the importance of an adequate dietary intake of Se for the maintenance of a healthy ageing population, especially in terms of cardiovascular health.
Resumo:
Generally, the magnitude of pollutant emissions from diesel engines is ultimately coupled to the structure of fuel molecules. The presence of oxygen, level of unsaturation and the carbon chain length of respective molecules influence the combustion chemistry. It is speculated that increased oxygen content in the fuel may lead to the increased oxidative potential (Stevanovic, S. 2013). Also, upon the exposure to UV and ozone in the atmosphere, the chemical composition of the exhaust is changed. The presence of an oxidant and UV is triggering the cascade of photochemical reactions as well as the partitioning of semi-volatile compounds between the gas and particle phase. To gain an insight into the relationship between the molecular structures of the esters, their volatile organic content and the potential toxicity of diesel exhaust particulate matter, measurements were conducted on a modern common rail diesel engine. This research also investigates the contribution of atmospheric conditions on the transfer of semi-volatile fraction of diesel exhaust from the gas phase to the particle phase and the extent to which semi-volatile compounds (SVOCs) are related to the oxidative potential, expressed through the concentration of reactive oxygen species (ROS) (Stevanovic, S. 2013)...
Resumo:
Aim To examine the mediating effect of coping strategies on the consequences of nursing and non-nursing (administrative) stressors on the job satisfaction of nurses during change management. Background Organisational change can result in an increase in nursing and nonnursing- related stressors, which can have a negative impact on the job satisfaction of nurses employed in health-care organisations. Method Matched data were collected in 2009 via an online survey at two timepoints (six months apart). Results Partial least squares path analysis revealed a significant causal relationship between Time 1 administrative and role stressors and an increase in nursing-specific stressors in Time 2. A significant relationship was also identified between job-specific nursing stressors and the adoption of effective coping strategies to deal with increased levels of change-induced stress and strain and the likelihood of reporting higher levels of job satisfaction in Time 2. Conclusions The effectiveness of coping strategies is critical in helping nurses to deal with the negative consequences of organisational change. Implications for nursing management This study shows that there is a causal relationship between change, non-nursing stressors and job satisfaction. Senior management should implement strategies aimed at reducing nursing and nonnursing stress during change in order to enhance the job satisfaction of nurses. Keywords: Australia, change management, job satisfaction, nursing and non-nursing stressors, public and non-profit sector
Resumo:
Recently we reported the presence of bacteria within follicular fluid. Previous studies have reported that DNA fragmentation in human spermatozoa after in vivo or in vitro incubation with bacteria results in early embryo demise and a reduced rate of ongoing pregnancy, but the effect of bacteria on oocytes is unknown. This study examined the DNA within mouse oocytes after 12 hours’ incubation within human follicular fluids (n = 5), which were collected from women undergoing in vitro fertilization (IVF) treatment. Each follicular fluid sample was cultured to detect the presence of bacteria. Terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) was used to label DNA fragmentation in ovulated, non-fertilized mouse oocytes following in vitro incubation in human follicular fluid. The bacteria Streptococcus anginosus and Peptoniphilus spp., Lactobacillus gasseri (low-dose), L. gasseri (high-dose), Enterococcus faecalis, or Propionibacterium acnes were detected within the follicular fluids. The most severe DNA fragmentation was observed in oocytes incubated in the follicular fluids containing P. acnes or L. gasseri (high-dose). No DNA fragmentation was observed in the mouse oocytes incubated in the follicular fluid containing low-dose L. gasseri or E. faecalis. Low human oocyte fertilization rates (<29%) were associated with extensive fragmentation in mouse oocytes (80–100%). Bacteria colonizing human follicular fluid in vivo may cause DNA fragmentation in mouse oocytes following 12 h of in vitro incubation. Follicular fluid bacteria may result in poor quality oocytes and/or embryos, leading to poor IVF outcomes.
Resumo:
During food drying, many other changes occur simultaneously, resulting in an improved overall quality. Among the quality attributes, the structure and its corresponding color influence directly or indirectly other properties of food. In addition, these quality attributes are affected by process conditions, material components and the raw structure of the foodstuff. In this work, the temperature distribution within food materials during microwave drying has been taken into consideration to observe its role in color modification. In order to determine the temperature distribution of microwave-dried food (apple), a thermal imaging camera has been used. The image acquired from the digital camera has been analysed using image J software in order to get the color change of fresh and dried apple. The results show that temperature distribution plays an important role in determining the quality of the food. The thermal imaging camera was deployed to observe the temperature distribution within food materials during drying. It is clearly observed from the higher value of (ERGB =102) and the uneven color change that uneven temperature distribution can influence customer perceptions of the quality of dried food. Simulation of a mathematical model of temperature distribution during microwave drying can make it possible to predict the colour and texture of the microwaved food.
Resumo:
The question as to whether poser race affects the happy categorization advantage, the faster categorization of happy than of negative emotional expressions, has been answered inconsistently. Hugenberg (2005) found the happy categorization advantage only for own race faces whereas faster categorization of angry expressions was evident for other race faces. Kubota and Ito (2007) found a happy categorization advantage for both own race and other race faces. These results have vastly different implications for understanding the influence of race cues on the processing of emotional expressions. The current study replicates the results of both prior studies and indicates that face type (computer-generated vs. photographic), presentation duration, and especially stimulus set size influence the happy categorization advantage as well as the moderating effect of poser race.
Resumo:
The addition of surface tension to the classical Stefan problem for melting a sphere causes the solution to blow up at a finite time before complete melting takes place. This singular behaviour is characterised by the speed of the solid-melt interface and the flux of heat at the interface both becoming unbounded in the blow-up limit. In this paper, we use numerical simulation for a particular energy-conserving one-phase version of the problem to show that kinetic undercooling regularises this blow-up, so that the model with both surface tension and kinetic undercooling has solutions that are regular right up to complete melting. By examining the regime in which the dimensionless kinetic undercooling parameter is small, our results demonstrate how physically realistic solutions to this Stefan problem are consistent with observations of abrupt melting of nanoscaled particles.
Resumo:
This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseo-integration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS™) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS™ were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testings 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-to-bone contact and bone formation in the core of the ligament at the later time point than the non-grafted specimens, the grafting also significantly reduced the fibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing.
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
Introduction Patients with virally mediated head and neck cancer (VMHNC) often present with advanced nodal disease that is highly radioresponsive as demonstrated by tumour and nodal regression during treatment. The resultant changes may impact on the planned dose distribution and so adversely affect the therapeutic ratio. The aim of this study was to evaluate the dosimetric effect of treatment-induced anatomical changes in VMHNC patients who had undergone a re-plan. Methods Thirteen patients with virally mediated oropharyngeal or nasopharyngeal cancer who presented for definitive radiotherapy between 2005 and 2010 and who had a re-plan generated were investigated. The dosimetric effect of anatomical changes, was quantified by comparing dose volume histograms (DVH) of primary and nodal gross target volumes and organs at risk (OAR), including spinal cord and parotid glands, from the original plan and a comparison plan. Results Eleven 3DCRT and 2 IMRT plans were evaluated. Dose to the spinal cord and brainstem increased by 4.1% and 2.6%, respectively. Mean dose to the parotid glands also increased by 3.5%. In contrast, the dose received by 98% of the primary and nodal gross tumour volumes decreased by 0.15% and 0.3%, respectively when comparing the initial treatment plan to the comparison plan. Conclusion In this study, treatment-induced anatomical changes had the greatest impact on OAR dose with negligible effect on the dose to nodal gross tumour volumes. In the era of intensity modulated radiotherapy (IMRT), accounting for treatment-induced anatomical changes is important as focus is placed on minimising the acute and long-term side effects of treatment.
Resumo:
BACKGROUND: Observational data suggested that supplementation with vitamin D could reduce risk of infection, but trial data are inconsistent. OBJECTIVE: We aimed to examine the effect of oral vitamin D supplementation on antibiotic use. DESIGN: We conducted a post hoc analysis of data from pilot D-Health, which is a randomized trial carried out in a general community setting between October 2010 and February 2012. A total of 644 Australian residents aged 60-84 y were randomly assigned to receive monthly doses of a placebo (n = 214) or 30,000 (n = 215) or 60,000 (n = 215) IU oral cholecalciferol for ≤12 mo. Antibiotics prescribed during the intervention period were ascertained by linkage with pharmacy records through the national health insurance scheme (Medicare Australia). RESULTS: People who were randomly assigned 60,000 IU cholecalciferol had nonsignificant 28% lower risk of having antibiotics prescribed at least once than did people in the placebo group (RR: 0.72; 95% CI: 0.48, 1.07). In analyses stratified by age, in subjects aged ≥70 y, there was a significant reduction in antibiotic use in the high-dose vitamin D compared with placebo groups (RR: 0.53; 95% CI: 0.32, 0.90), whereas there was no effect in participants <70 y old (RR: 1.07; 95% CI: 0.58, 1.97) (P-interaction = 0.1). CONCLUSION: Although this study was a post hoc analysis and statistically nonsignificant, this trial lends some support to the hypothesis that supplementation with 60,000 IU vitamin D/mo is associated with lower risk of infection, particularly in older adults. The trial was registered at the Australian New Zealand Clinical Trials Registry (anzctr.org.au) as ACTRN12609001063202.