944 resultados para sine fatigue (cyclic loading)
Resumo:
Existing field data for Rangal coals (Late Permian) of the Bowen Basin, Queensland, Australia, are inconsistent with the depositional model generally accepted in the current geological literature to explain coal deposition. Given the apparent unsuitability of the current depositional model to the Bowen Basin coal data, a new depositional model, here named the Cyclic Salinity Model, is proposed and tested in this study.
Resumo:
Background Cancer-related fatigue (CRF) is the most common and distressing symptom reported by breast cancer survivors. The primary aim of this study was to translate and evaluate psychometrically for the first time a Spanish version of the Piper Fatigue Scale-Revised (S-PFS-R). Methods One hundred and eleven women with stage I–IIIA breast cancer who had completed their primary cancer therapy in the previous 6 months with the exception of hormone therapy completed the S-PFS-R, the Profile of Mood States (POMS) Fatigue (POMS-F) and Vigor subscales (POMS-V), and bilateral force handgrip testing. Data analysis included test–retest reliability, construct validity, criterion-related validity, and exploratory factor analyses. Results Test–retest reliability was satisfactory (r > 0.86), and all subscales showed moderate to high construct validity estimates [corrected item-subscale correlations (Pearson r = ≥ 0.65)]. The exploratory factor analysis revealed four dimensions with 75.5 % of the common variance explained. The S-PFS-R total score positively correlated with the POMS-F subscale (r = 0.50–0.78) and negatively with the POMS-V subscale (r = −0.13 to −0.44) confirming criterion-related validity. Negative correlations among force handgrip testing, subscales, and total scores were weak (r = −0.26 to −0.29). Conclusions The Spanish version of PFS-R shows satisfactory psychometric properties in a sample of breast cancer survivors. This is the first study to translate the PFS-R into Spanish and further testing is warranted.
Resumo:
Do you know how to drive a train? If you don’t you probably believe that you have a fair idea of what it’s all about. Forget what you know, or think you know. Trains are heavy and fast but they feel and handle like driving on ice so they take a long time to stop. The braking distances for a typical piece of track are unlike anything you will have experienced before. With that in mind, imagine you were driving with a bit of dew, or grease, or millipede over the track. You would lose traction and slip everywhere. To avoid this, you would need a compensatory driving strategy. You could drive more slowly, or brake sooner, or change how you brake. Your experience and intuition would lead the way. Folks, this is why it’s called “driving by the seat of your pants”...
Resumo:
It is unknown if fatigue measures like the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF; Stein, Jacobsen, Blanchard, & Thors, 2004) appropriately describe fatigue in Hispanics or if acculturation plays a role in fatigue. This study compared fatigue in community samples of Hispanics and Anglos. The MFSI-SF and pertinent questionnaires were administered to adults in San Diego County via telephone survey. Some differences in fatigue were observed in initial comparisons between Hispanics and Anglos, including when acculturation was considered. When age and education were controlled, Hispanics reported less general fatigue than Anglos, regardless of acculturation status, p = < .01. Exploratory factor analyses indicate that the MFSI-SF general-fatigue subscale was problematic for Hispanics. Implications, limitations, and future directions are discussed.
Resumo:
To The ratcheting behavior of high-strength rail steel (Australian Standard AS1085.1) is studied in this work for the purpose of predicting wear and damage to the rail surface. Historically, researchers have used circular test coupons obtained from the rail head to conduct cyclic load tests, but according to hardness profile data, considerable variation exists across the rail head section. For example, the induction-hardened rail (AS1085.1) shows high hardness (400-430 HV100) up to four-millimeters into the rail head’s surface, but then drops considerably beyond that. Given that cyclic test coupons five millimeters in diameter at the gauge area are usually taken from the rail sample, there is a high probability that the original surface properties of the rail do not apply across the entire test coupon and, therefore, data representing only average material properties are obtained. In the literature, disks (47 mm in diameter) for a twin-disk rolling contact test machine have been obtained directly from the rail sample and used to validate rolling contact fatigue wear models. The question arises: How accurate are such predictions? In this research paper, the effect of rail sampling position on the ratcheting behavior of AS1085.1 rail steel was investigated using rectangular shaped specimens. Uniaxial stress-controlled tests were conducted with samples obtained at four different depths to observe the ratcheting behaviour of each. Micro-hardness measurements of the test coupons were carried out to obtain a constitutive relationship to predict the effect of depth on the ratcheting behaviour of the rail material. This work ultimately assists the selection of valid material parameters for constitutive models in the study of rail surface ratcheting.
Resumo:
Particle analysis methodology is presented, together with the morphology of the wear debris formed during rolling contact fatigue. Wear particles are characterised by their surface topography and in terms of wear mechanism. Rail-wheel materials are subjected to severe plastic deformation as the contact loading progresses, which contributes to a mechanism of major damage in head-hardened rail steel. Most of the current methodologies involve sectioning of the rail-wheel discs to trace material damage phenomena such as crack propagation and plastic strain accumulation. This paper proposes methodology to analyse the development of the plastically deformed layer by sectioning wear particles using the focussed ion beam (FIB) milling method. Moreover, it highlights the processes of oxidation and rail surface delamination during unlubricated rolling contact fatigue.
Resumo:
This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.
Resumo:
The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.
Resumo:
Background To date bone-anchored prostheses are used to alleviate the concerns caused by socket suspended prostheses and to improve the quality of life of transfemoral amputees (TFA). Currently, two implants are commercially available (i.e., OPRA (Integrum AB, Sweden), ILP (Orthodynamics GmbH, Germany)). [1-17]The success of the OPRA technique is codetermined by the rehabilitation program. TFA fitted with an osseointegrated implant perform progressive mechanical loading (i.e. static load bearing exercises (LBE)) to facilitate bone remodelling around the implant.[18, 19] Aim This study investigated the trustworthiness of monitoring the load prescribed (LP) during experimental static LBEs using the vertical force provided by a mechanical bathroom scale that is considered a surrogate of the actual load applied. Method Eleven unilateral TFAs fitted with an OPRA implant performed five trials in four loading conditions. The forces and moments on the three axes of the implant were measured directly with an instrumented pylon including a six-channel transducer. The “axial” and “vectorial” comparisons corresponding to the difference between the force applied on the long axis of the fixation and LP as well as the resultant of the three components of the load applied and LP, respectively were analysed Results For each loading condition, Wilcoxon One-Sample Signed Rank Tests were used to investigate if significant differences (p<0.05) could be demonstrated between the force applied on the long axis and LP, and between the resultant of the force and LP. The results demonstrated that the raw axial and vectorial differences were significantly different from zero in all conditions (p<0.05), except for the vectorial difference for the 40 kg loading condition (p=0.182). The raw axial difference was negative for all the participants in every loading condition, except for TFA03 in the 10 kg condition (11.17 N). Discussion & Conclusion This study showed a significant lack of axial compliance. The load applied on the long axis was significantly smaller than LP in every loading condition. This led to a systematic underloading of the long axis of the implant during the proposed experimental LBE. Monitoring the vertical force might be only partially reflective of the actual load applied, particularly on the long axis of the implant.
Resumo:
Finite element analysis (FEA) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was develop d only with the plastic material model. The outcomes of force versus time curves obtained from FEA models followed similar pattern to the experimental curves however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modelling were used to develop material model for peel and flesh tissues in FEA modelling of mechanical peeling of tough skinned vegetables.
Resumo:
Background: Driver fatigue contributes to 15-30% of crashes, however it is difficult to objectively measure. Fatigue mitigation relies on driver self-moderation, placing great importance on the necessity for road safety campaigns to engage with their audience. Popular self-archiving website YouTube.com is a relatively unused source of public perceptions. Method: A systematic YouTube.com search (videos uploaded 2/12/09 - 2/12/14) was conducted using driver fatigue related search terms. 442 relevant videos were identified. In-vehicle footage was separated for further analysis. Video reception was quantified in terms of number of views, likes, comments, dislikes and times duplicated. Qualitative analysis of comments was undertaken to identify key themes. Results: 4.2% (n=107) of relevant uploaded videos contained in-vehicle footage. Three types of videos were identified: (1) dashcam footage (n=82); (2) speaking directly to the camera - vlogs (n=16); (3) passengers filming drivers (n=9). Two distinct types of comments emerged, those directly relating to driver fatigue and those more broadly about the video or its uploader. Driver fatigue comments included: attribution of behaviour cause, emotion experienced when watching the video and personal advice on staying awake while driving. Discussion: In-vehicle footage related to driver fatigue is prevalent on YouTube.com and is actively engaged with by viewers. Comments were mixed in terms of criticism and sympathy for drivers. Willingness to share advice on staying awake suggests driver fatigue may be seen as a common yet controllable occurrence. This project provides new insight into driver fatigue perception, which may be considered by safety authorities when designing education campaigns.
Resumo:
Five stereochemically constrained analogs of the chemotactic tripeptide incorporating 1-aminocycloalkane-1-carboxylic acid (Ac(n)c) and alpha,alpha-dialkylglycines (Deg, diethylglycine; Dpg, n,n-dipropylglycine and Dbg, n,n-dibutylglycine) at position 2 have been synthesized. NMR studies of peptides For-Met-Xxx-Phe-OMe (Xxx = Ac(7)c, I; Ac(8)c, II; Deg, III; Dpg, IV and Dbg, V; For, formyl) establish that peptides with cycloalkyl residues, I and II, adopt folded beta-turn conformations in CDCl3 and (CD3)(2)SO. In contrast, analogs with linear alkyl sidechains, III-V, favour fully extended (C-5) conformations in solution. Peptides I-V exhibit high activity in inducing beta-glucosaminidase release from rabbit neutrophils, with ED(50) values ranging from 1.4-8.0 x 10(-11)M. In human neutrophils the Dxg peptides III-V have ED(50) values ranging from 2.3 x 10(-8) to 5.9 x 10(-10) M, with the activity order being V > IV > III. While peptides I-IV are less active than the parent. For-Met-Leu-Phe-OH, in stimulating histamine release from human basophils, the Dbg peptide V is appreciably more potent, suggesting its potential utility as a probe for formyl peptide receptors.
Resumo:
Ceramic samples of SrBi2Ta2O9 (SBT) were prepared by the solid state reaction method with a view to study their electrical properties. Reasons as to why SBT shows better fatigue endurance than conventional perovskites like Pb(Zr, Ti)O-3 are looked into. Complex impedance spectroscopy (CIS) was used as a tool to do so. CIS data was acquired over the temperature range from room temperature to 500 degrees C over a wide range of frequencies. Electrical conductivity data indicates that the conductivity in SBT is essentially due to oxygen vacancies and the activation energy for conduction in the high temperature region was found to be 0.95 eV. CIS was used to separate out the bulk and the interfacial contributions to complex impedance.
Resumo:
Background Calcification is commonly believed to be associated with cardiovascular disease burden. But whether or not the calcifications have a negative effect on plaque vulnerability is still under debate. Methods and Results Fatigue rupture analysis and the fatigue life were used to evaluate the rupture risk. An idealized baseline model containing no calcification was first built. Based on the baseline model, we investigated the influence of calcification on rupture path and fatigue life by adding a circular calcification and changing its location within the fibrous cap area. Results show that 84.0% of calcified cases increase the fatigue life up to 11.4%. For rupture paths 10D far from the calcification, the life change is negligible. Calcifications close to lumen increase more fatigue life than those close to the lipid pool. Also, calcifications in the middle area of fibrous cap increase more fatigue life than those in the shoulder area. Conclusion Calcifications may play a positive role in the plaque stability. The influence of the calcification only exists in a local area. Calcifications close to lumen may be influenced more than those close to lipid pool. And calcifications in the middle area of fibrous cap are seemly influenced more than those in the shoulder area.