964 resultados para phonon anomaly
Resumo:
The electrical resistivity of bulk GexTe100-x glasses has been measured as a function of temperature and pressure. Under high pressure, all the glasses were found to undergo sharp discontinuous transitions from glassy semiconductors to crystalline metal. Several of the observed properties such as the transition pressure, conductivity activation energy and pre-exponential factor, exhibit anomalous trends at a composition x = 20. These results suggest that the x = 20 composition in the Ge-Te system should possess salient structural features. A model based on the unusual stability of structural units is proposed for explaining the anomaly at 20 at.% Ge concentration.
Resumo:
Human parvovirus B19 (B19V) is known to cause anemia, hydrops fetalis, and fetal death especially during the first half of pregnancy. Women who are in occupational contact with young children are at increased risk of B19V infection. The role of the recently discovered human parvovirus, human bocavirus (HBoV), in reproduction is unknown. The aim of this research project was to establish a scientific basis for assessing the work safety of pregnant women and for issuing special maternity leave regulations during B19V epidemics in Finland. The impact of HBoV infection on the pregnant woman and her fetus was also defined. B19V DNA was found in 0.8% of the miscarriages and in 2.4% of the intrauterine fetal death (IUFD; fetal death after completed 22 gestational weeks). All control fetuses (from induced abortions) were B19V-DNA negative. The findings on hydropic B19V DNA-positive IUFDs with evidence of acute or recent maternal B19V infection are in line with those of previous Swedish studies. However, the high prevalence of B19V-related nonhydropic IUFDs noted in the Swedish studies was mostly without evidence of maternal B19V infection and was not found during the third trimester. HBoV was not associated with miscarriages or IUFDs. Almost all of the studied pregnant women were HboV-IgG positive, and thus most probably immune to HBoV. All preterm births, perinatal deaths, smallness for gestational age (SGA) and congenital anomaly were recorded among the infants of child-care employees in a nationwide register-based cohort study over a period of 14 years. Little or no differences in the results were found between the infants of the child-care employees and those of the comparison group. The annual B19V seroconversion rate was over two-fold among the child-care employees, compared to the women in the comparison group. The seropositivity of the child-care employees increased with age, and years from qualification/joining the trade union. In general, the child-care employees are not at increased risk for adverse pregnancy outcome. However, at the population level, the risk of rare events, such as adverse pregnancy outcomes attributed to infections, could not be determined. According to previous studies, seronegative women had a 5 10% excess risk of losing the fetus during the first half of their pregnancy, but thereafter the risk was very low. Therefore, an over two-fold increased risk of B19V infection among child-care employees is considerable, and should be taken into account in the assessment of the occupational safety of pregnant women, especially during the first half of their pregnancy.
Resumo:
We present first-principles density-functional-theory-based calculations to determine the effects of the strength of on-site electron correlation, magnetic ordering, pressure and Se vacancies on phonon frequencies and electronic structure of FeSe1-x. The theoretical equilibrium structure (lattice parameters) of FeSe depends sensitively on the value of the Hubbard parameter U of on-site correlation and magnetic ordering. Our results suggest that there is a competition between different antiferromagnetic states due to comparable magnetic exchange couplings between first- and second-neighbor Fe sites. As a result, a short range order of stripe antiferromagnetic type is shown to be relevant to the normal state of FeSe at low temperature. We show that there is a strong spin-phonon coupling in FeSe (comparable to its superconducting transition temperature) as reflected in large changes in the frequencies of certain phonons with different magnetic ordering, which is used to explain the observed hardening of a Raman-active phonon at temperatures (similar to 100 K) where magnetic ordering sets in. The symmetry of the stripe antiferromagnetic phase permits an induced stress with orthorhombic symmetry, leading to orthorhombic strain as a secondary order parameter at the temperature of magnetic ordering. The presence of Se vacancies in FeSe gives rise to a large peak in the density of states near the Fermi energy, which could enhance the superconducting transition temperature within the BCS-like picture.
Resumo:
The d.c. conductivity of phosphomolybdate and phosphotungstate glasses is discussed. The conductivity of these glasses is due to the hopping of electrons between two valence states (Mo5+ to Mo6+ or W5+ W6+). In some of the glasses, the activation energy itself is found to be a function of temperature. This appears to be due to thermally activated and variable-range hopping mechanisms operating in different temperature regimes. The relation between conductivity and the [M5+]/[Mtotal](M ≡ Mo, W) ratio does not show any systematic variation. This anomaly can be understood using the structural models of these glasses. In contrast, Mott's theory and the Triberis and Friedman model have been used to obtain conductivity parameters such as the percolation distance Rij and 2agrRij (agr is the tunnelling probability). The conductivity parameter 2agrRij is quite useful to resolve the controversy regarding the tunnelling term exp(2agrRij) existing in the literature. For low values of 2agrRij, it is shown that the exp (2agrRij) term is very significant.
Resumo:
The interface between two polar semiconductors can support three types of phonon-plasmon-polariton modes propagating in three well-defined frequency windows ??1?[min(?1,?3),?R1], ??2?[max(?2,?4),?R2], and ??3?[min(?2,?4),?R3]. The limiting frequencies ?1,2,3,4 are defined by ?1(?)=0, ?2(?)=0, and ?R1,2,3 by ?1(?)+?2(?)=0, where ?i(?) are dielectric functions of the two media with i=1,2. The dispersion, decay distances, and polarization of the three modes are discussed. The variation of the limiting frequencies with the interface plasma parameter ???p22/?p12 reveals an interesting feature in the dispersion characteristics of these modes. For the interfaces for which the bulk coupled phonon-plasmon frequencies of medium 1 are greater than the LO frequency or are less than the TO frequency of medium 2, there exist two values of ?=?1 and ?2(1) for which ??1 and ??3 are zero, respectively. Hence, for these values of ?, the two interface modes defined by ??1 and ??3 propagate with constant frequencies equal to the bulk coupled phonon-plasmon frequencies of medium 1, i.e., without showing any dispersion.
Resumo:
We have investigated the influence of Fe excess on the electrical transport and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both compositions exhibit resistively determined superconducting transitions (T-c) with an onset temperature of about 15 K. From the width of the superconducting transition and the magnitude of the lower critical field H-c1, it is inferred that excess of Fe suppresses superconductivity. The linear and nonlinear responses of the ac susceptibility show that the superconducting state for these compositions is inhomogeneous. A possible origin of this phase separation is a magnetic coupling between Fe excess occupying interstitial sites in the chalcogen planes and those in the Fe-square lattice. The temperature derivative of the resistivity d(rho)/d(T) in the temperature range T-c < T < T-a with T-a being the temperature of a magnetic anomaly, changes from positive to negative with increasing Fe. A log 1/T divergence of the resistivity above T-c in the sample with higher amount of Fe suggests a disorder-driven electronic localization.
Resumo:
We have measured the frequency-dependent real index of refraction and extinction coefficient (and hence the complex dielectric function) of a free-standing double-walled carbon nanotube film of thickness 200 nm by using terahertz time domain spectroscopy in the frequency range 0.1 to 2.5 THz. The real index of refraction and extinction coefficient have very high values of approximately 52 and 35, respectively, at 0.1 THz, which decrease at higher frequencies. Two low-frequency phonon modes of the carbon nanotubes at 0.45 and 0.75 THz were clearly observed for the first time in the real and imaginary parts of the complex dielectric function along with a broad resonance centred at around 1.45 THz, the latter being similar to that in single-walled carbon nanotubes assigned to electronic excitations. Our experiments bring out a possible application of double-walled carbon nanotube films as a neutral density filter in the THz range.
Resumo:
The infra-red spectra of a large number of ternary Cu(II) oxides with at least a quasi square-planar coordination of oxygen around the copper ions have been studied. The frequency of the bands with the highest frequency,v max, is found to correlate extremely well with the shortest Cu–O distance.v max increases at an impressive rate of sim20 cm–1 per 0.01 Å when the Cu–O distance becomes less than 1.97 Å, which is the Cu2+–O2– distance in square-planar CuO4 complexes as obtained from empirical ionic radii considerations. The marked sensitivity may be used as a ldquotitrationrdquo procedure not only to assign bands but also to obtain diagnostic information about local coordination in compounds derived, for example, from the YBa2Cu3O7–d structure such as LaCaBaCu3O7–d . The only example where this correlation fails is in the two-layer non-superconducting oxides derived from La2(Ca, Sr)Cu2O6. The significance of this result is discussed. The marked dependence of frequency on the bond-distance is qualitatively examined in terms of an increased electron-phonon coupling to account for the observed tendency of the superconducting transition temperature to go through a maximum as the average basal plane Cu–O distance is decreased.
Resumo:
This study focuses on the temperature dependent optical band gap changes in the amorphous Ge2Sb2Te5 (GST) films. The behavior of the amorphous GST thin films at low temperatures has been studied. The band gap increment of around 0.2 eV is observed at low temperature (4.2 K) compared to room temperature (300 K). The band gap changes associated with the temperature are completely reversible. The other optical parameters like Urbach energy and Tauc parameter (B-1/2) are studied for different temperatures and discussed. The observed changes in optical band gap (E-g) are fitting to Fan's one phonon approximation. Phonon energy ((h) over bar omega) corresponding to a frequency of 3.59 THz is derived from Fan's approximation, which is close to the reported value of 3.66 THz. (C) 2010 Elsevier B.V. All rights reserved.
Effects of Zr and Ti doping on the dielectric response of CeO2: A comparative first-principles study
Resumo:
Zr doping in ceria (CeO2) results in enhanced static dielectric response compared to pure ceria. On the other hand, Ti doping in ceria keeps its dielectric constant unchanged. We use first-principles density functional theory calculations based on pseudopotentials and a plane wave basis to determine electronic properties and dielectric response of Zr/Ti-doped and oxygen-vacancy-introduced ceria. Softening of phonon modes is responsible for the enhancement in dielectric response of Zr-doped ceria compared to that of pure ceria. The ceria-zirconia mixed oxides should have potential use as high-k materials in the semiconductor industry. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Characterization of silver- and gold-related defects in gallium arsenide is carried out. These impurities were introduced during the thermal diffusion process and the related defects are characterized by deep-level transient spectroscopy and photoluminescence. The silver-related center in GaAs shows a 0.238 eV photoluminescence line corresponding to no-phonon transition, whereas its thermal ionization energy is found to be 0.426 eV. The thermal activation energy of the gold-related center in GaAs is 0.395 eV, but there is no corresponding luminescence signal.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
We report femtosecond time-resolved reflectivity measurements of coherent phonons in tellurium performed over a wide range of temperatures (3-296 K) and pump-laser intensities. A totally symmetric A(1) coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e., phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier density of (1.4 x 10(21) cm(-3) and the sample temperature of 3 K, the lattice displacement of the coherent phonon mode is estimated to be as high as similar to 0.24 angstrom. Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the nonoscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6 x 10(18) cm(-3), we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth.
Resumo:
Sr2TiMnO6, a double perovskite associated with high degree of B-site cation disorder was investigated in detail for its structural, magnetic, and dielectric properties. Though x-ray powder diffraction analysis confirms its cubic structure, first order Raman scattering and infrared reflectivity spectra indicate a breaking of the local cubic symmetry. The magnetization study reveals an anomaly at 14 K owing to a ferrimagnetic/canted antiferromagneticlike ordering arising from local Mn-O-Mn clusters. Saturated M-H hysteresis loops obtained at 5 K also reflect the weak ferromagnetic exchange interactions present in the system and an approximate estimation of Mn3+/Mn4+ was done using the magnetization data for the samples sintered at different temperatures. The conductivity and dielectric behavior of this system has been investigated in a broad temperature range of 10 to 300 K. Intrinsic permittivity was obtained only below 100 K whereas giant permittivity due to conductivity and Maxwell-Wagner polarization was observed at higher temperatures. X-ray photoemission studies further confirmed the presence of mixed oxidation states of Mn and the valence band spectra analysis was carried out in detail. (C) 2010 American Institute of Physics. doi: 10.1063/1.3500369]
Resumo:
The electrical resistance is measured in two binary liquid systems CS2 + CH3NO2 and n-C7H16 + CH3OH in the critical region as a function of frequency from 10 Hz to 100 kHz. The critical exponent b ≈ 0.35 in the singularity of dR/dT α (T - Tc)−b near Tc has no appreciable dependence upon the frequency. Thus any contribution from dielectric dispersion to the critical resistivity is not appreciable. The universal behaviour of the dR/dT anomaly does not seem to be followed in binary liquid systems.