901 resultados para phenolic compound
Resumo:
A method for the simultaneous determination of the stilbene resveratrol, four phenolic acids (syringic, coumaric, caffeic, and gallic acids), and five flavonoids (catechin, rutin, kaempferol, myricetin, and quercetin) in wine by CE was developed and validated. The CE electrolyte composition and instrumental conditions were optimized using 2(7-3) factorial design and response surface analysis, showing sodium tetraborate, MeOH, and their interaction as the most influential variables. The optimal electrophoretic conditions, minimizing the chromatographic resolution statistic values, consisted of 17 mmol/L sodium tetraborate with 20% methanol as electrolyte, constant voltage of 25 kV, hydrodynamic injection at 50 mbar for 3 s, and temperature of 25 degrees C. The R(2) values for linearity varied from 0.994 to 0.999; LOD and LOQ were 0.1 to 0.3 mg/L and 0.4 to 0.8 mg/L, respectively. The RSDs for migration time and peak area obtained from ten consecutive injections were less than 2% and recoveries varied from 97 to 102%. The method was applied to 23 samples of inexpensive Brazilian wines, showing wide compositional variation.
Resumo:
The trypanocidal activity of crude extracts and fractions from the leaves and stems of Peperomia obtusifolia (Piperaceae) was evaluated in vitro against the epimastigote forms of Trypanosoma cruzi. Bioactivity-guided fractionation of the most active extracts afforded seven known compounds, including three chromanes, two furofuran lignans and two flavone C-diglycosides. The most active compounds were the chromanes peperobtusin A and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid, with IC(50) values of 3.1 mu M (almost three times more active than the positive control benznidazole, IC(50) 10.4 mu M) and 27.0 mu M, respectively. Cytotoxicity assays using peritoneal murine macrophages indicated that the chromanes were not toxic at the level of the IC(50) for trypanocidal activity. This is the first report on the trypanocidal activity besides unspecific cytotoxicity of chromanes from Peperomia species. Additionally it represents the first time isolation of 3,4-dihydro5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid from P. obtusifolia.
Resumo:
Organotellurium(]V) compounds have been reported to have multiple biological activities including cysteine protease-inhibitory activity, mainly cathepsin B. As cathepsin B is a highly predictive indicator for prognosis and diagnosis of cancer, a possible antitumor potential for these new compounds is expected. In this work, it was investigated the effectiveness of organotellurium(IV) RT-04 to produce lethal effects in the human promyelocytic leukaemia cell line HL60. Using the MTT tetrazolium reduction test, and trypan blue exclusion assay, the IC50 for the compound after 24 h incubation was 6.8 and 0.35 mu M, respectively. Moreover, the compound was found to trigger apoptosis in HL60 cells, inducing DNA fragmentation and caspase-3, -6, and -9 activations. The apoptsosis-induced by RT-04 is probably related to the diminished Bcl-2 expression, observed by RT-PCR, in HL60-treated cells. In vivo studies demonstrated that the RT-04 treatment (2.76 mg/kg given for three consecutive days) produces no significant toxic effects for bone marrow and spleen CFU-GM. However, higher doses (5.0 and 10 mg/kg) produced a dose-dependent reduction in the number of CFU-GM of RT-04-treated mice. These results suggest that RT-04 is able to induce apoptosis in HL60 cells by Bcl-2 expression down-modulation. Further studies are necessary to better clarify the effects of this compound on bone marrow normal cells. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.
Resumo:
Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.
Resumo:
Sisal fibers have been chemically modified by reaction with lignins, extracted from sugarcane bagasse and Pinus-type wood and then hydroxymethylated, to increase adhesion in resol-type phenolic thermoset matrices. Inverse gas chromatography (IGC) results showed that acidic sites predominate for unmodified/modified sisal fibers and for phenolic thermoset, indicating that the phenolic matrix has properties that favor the interaction with sisal fibers. The IGC results also showed that the phenolic thermoset has a dispersive component closer to those of the modified fibers suggesting that thermoset interactions with the less polar modified fibers are favored. Surface SEM images of the modified fibers showed that the fiber bundle deaggregation increased after the treatment, making the interfibrillar structure less dense in comparison with that of unmodified fibers, which increased the contact area and encouraged microbial biodegradation in simulated soil. Water diffusion was observed to be faster for composites reinforced with modified fibers, since the phenolic resin penetrated better into modified fibers, thereby blocking water passage through their channels. Overall, composites` properties showed that modified fibers promote a significant reduction in the hydrophilic character, and consequently of the reinforced composite without a major effect on impact strength and with increased storage modulus. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tannin-phenolic polymers prepared using tannin, a macromolecule obtained from natural sources, were used in the preparation of composites reinforced with coir fibers. The composites based on tannin-phenolic polymers (50% (w/w) of tannin as substitute of the phenol) were prepared using the coir fibers as reinforcement (30-70% (w/w), 3.0-6.0 cm, randomly distributed). The Izod impact strength of the composites showed an improvement in this property due to the incorporation of coir fibers in the tannin-phenolic matrices. The SEM images showed excellent adhesion at the fiber/matrix interface. The coir fiber had bundles regularly spaced, which enhanced the diffusion of the resin into the fiber. In addition, the high lignin content of this fiber results in a high concentration of aromatic rings, which increased the compatibility with the matrix. The values of the diffusion coefficient of water, determined using Fick`s laws, show that there was no correlation between the fiber percentage and the water diffusion. The DMTA curves showed that the storage moduli of the composites reinforced with coir fibers were considerably higher than that of the thermoset, and the increase in the proportion of fibers led to a proportional increase in the storage moduli of these materials. The biobased composites obtained have potential for non-structural applications, such as in the internal parts of automotives vehicles. To our knowledge, this is the first study on this kind of biobased composites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lignocellulosic materials can significantly contribute to the development of biobased composites. In this work, glyoxal-phenolic resins for composites were prepared using glyoxal, which is a dialdehyde obtained from several natural resources. The resins were characterized by (1)H, (13)C, (2)D, and (31)P NMR spectroscopies. Resorcinol (10%) was used as an accelerator for curing the glyoxal-phenol resins in order to obtain the thermosets. The impact-strength measurement showed that regardless of the cure cycle used, the reinforcement of thermosets by 30% (w/w) sisal fibers improved the impact strength by one order of magnitude. Curing with cycle 1 (150 degrees C) induced a high diffusion coefficient for water absorption in composites, due to less interaction between the sisal fibers and water. The composites cured with cycle 2 (180 degrees C) had less glyoxal resin coverage of the cellulosic fibers, as observed by images of the fractured interface observed by SEM. This study shows that biobased composites with good properties can be prepared using a high proportion of materials obtained from natural resources. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work, composites based on a phenolic matrix and untreated- and treated sisal fibers were prepared. The treated sisal fibers used were those reacted with NaOH 2% solution and esterified using benzophenonetetracarboxylic dianhydride (BTDA). These treated fibers were modified with the objective of improving the adhesion of the fiber-matrix interface, which in turn influences the properties of the composites. BTDA was chosen as the esterifying agent to take advantage of the possibility of introducing; the polar and aromatic groups that are also present in the matrix structure into the surface of the fiber, which could then intensify the interactions occurring in the fiber-matrix interface. The fibers were then analyzed by SEM and FTIR to ascertain their chemical composition. The results showed that the fibers had been successfully modified. The composites (reinforced with 15%, w/w of 3.0 cm length sisal fiber randomly distributed) were characterized by SEM, impact strength, and water absorption capacity. In the tests conducted, the response of the composites was affected both by properties of the matrix and the fibers, besides the interfacial properties of the fiber-matrix. Overall, the results showed that the fiber treatment resulted in a composite that was less hygroscopic although with somewhat lower impact strength, when compared with the composite reinforced with untreated sisal fibers. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 269-276, 2010
Resumo:
The aim of the present work was to investigate the toughening of phenolic thermoset and its composites reinforced with sisal fibers, using hydroxyl-terminated polybutadiene rubber (HTPB) as both impact modifier and coupling agent. Substantial increase in the impact strength of the thermoset was achieved by the addition 10% of HTPB. Scanning electron microscopy (SEM) images of the material with 15% HTPB content revealed the formation of some rubber aggregates that reduced the efficiency of the toughening mechanism. In composites, the toughening effect was observed only when 2.5% of HTPB was added. The rubber aggregates were found located mainly at the matrix-fiber interface suggesting that HTPB could be used as coupling agent between the sisal fibers and the phenolic matrix. A composite reinforced with sisal fibers pre-impregnated with HTPB was then prepared; its SEM images showed the formation of a thin coating of HTPB on the surface of the fibers. The ability of HTBP as coupling agent between sisal fibers and phenolic matrix was then investigated by preparing a composite reinforced with sisal fibers pre-treated with HTPB. As revealed by its SEM images, the HTPB pre-treatment of the fibers resulted on the formation of a thin coating of HTPB on the surface of the fibers, which provided better compatibility between the fibers and the matrix at their interface, resulting in a material with low water absorption capacity and no loss of impact strength. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The antioxidant activity of methanol extracts from Passiflora edulis and Passiflora alata pulp, and P. edulis rinds, healthy or infected with the passion fruit woodiness virus (PWV), was investigated using the oxidant activities of the neutrophil and the neutrophil granule enzyme myeloperoxidase (MPO), both playing key roles in inflammation. The reactive oxygen species produced by stimulated neutrophils were evaluated by lucigenin-enhanced chemiluminescence (CL) and the activity of purified MPO was measured by SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection), a technique for studying the direct interaction of a compound with the enzyme. The rind extracts of P. edulis possessed higher and dose-dependent inhibitory effects on CL response and on the peroxidase activity of MPO than total pulp extracts from both passion fruit species. The quantification of isoorientin in the extracts showed a correlation with their antioxidant activity, suggesting the potential of P. edulis rinds as functional food or as a possible source of natural flavonoids. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A total of 25 sugarcane spirit extracts of six different Brazilian woods and oak, commonly used by cooperage industries for aging cachaca, were analyzed for the presence of 14 phenolic compounds (ellagic acid, gallic acid, vanillin, syringaldehyde, synapaldehyde, coniferaldehyde, vanillic acid, syringic acid, quercetin, trans-resveratrol, catechin, epicatechin, eugenol, and myricetin) and two coumarins (scopoletin and coumarin) by HPLC-DAD-fluorescence and HPLC-ESI-MS(n). Furthermore, an HPLC-DAD chromatographic fingerprint was build-up using chemometric analysis based on the chromatographic elution profiles of the extracts monitored at 280 nm. Major components identified and quantified in Brazilian wood extracts were coumarin, ellagic acid, and catechin, whereas oak extracts shown a major contribution of catechin, vanillic acid, and syringaldehyde. The main difference observed among oak and Brazilian woods remains in the concentration of coumarin, catechin, syringaldehyde, and coniferaldehyde. The chemometric analysis of the quantitative profile of the 14 phenolic compounds and two coumarins in the wood extracts provides a differentiation between the Brazilian wood and oak extracts. The chromatographic fingerprint treated by multivariate analysis revealed significant differences among Brazilian woods themselves and oak, clearly defining six groups of wood extracts: (i) oak extracts, (ii) jatoba extracts, (iii) cabreuva-parda extracts, (iv) amendoim extracts, (v) canela-sassafras extracts and (vi) pequi extracts.
Resumo:
Phenolic compounds are one of the most important quality parameters of wines, since they contribute to wine organoleptic characteristics such as colour, astringency, and bitterness. Furthermore, several studies have pointed out that many show biological properties of interest, related to their antioxidant capacity. This antioxidant activity has been thoroughly studied and a wide variety of methods have been developed to evaluate it. In this study, the antioxidant activity of commercial Terras Madeirenses Portuguese wines (Madeira Island) was measured by three different analytical methods: [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTSradical dot+)) radical cation decolourisation, and ferric reducing/antioxidant power (FRAP) for the evaluation of reducing power (PR) and correlate them with the total phenolic content determined with the Folin–Ciocalteu’s reagent using gallic acid as a standard. The total polyphenol concentration was found to vary from 252 to 1936 mg/l gallic acid equivalents (GAE). The antiradical activity varied from 0.042 to 0.715 mM Trolox equivalents and the antioxidant capacity varied from 344 to 1105 mg/l gallic acid equivalents (GAE). For the reduction power we obtained 3.45–3.86 mM quercetin equivalents.
Resumo:
This study represents the first phytochemical research of phenolic components of Sercial and Tinta Negra Vitis vinifera L. The phenolic profiles of Sercial and Tinta Negra V. vinifera L. grape skins (white and red varieties, respectively) were established using high performance liquid chromatography–diode array detection–electrospray ionisation tandem mass spectrometry (HPLC–DAD–ESI-MSn), at different ripening stages (véraison and maturity). A total of 40 phenolic compounds were identified, which included 3 hydroxybenzoic acids, 8 hydroxycinnamic acids, 4 flavanols, 5 flavanones, 8 flavonols, 4 stilbenes, and 8 anthocyanins. For the white variety, in both ripening stages, hydroxycinnamic acids and flavonols were the main phenolic classes, representing about 80% of the phenolic composition. For red variety, at véraison, hydroxycinnamic acids and flavonols were also the predominant classes (71%), but at maturity, anthocyanins represented 84% of the phenolic composition. As far as we know, 10 compounds were reported for the first time in V. vinifera L. grapes, namely protocatechuic acid-glucoside, p-hydroxybenzoyl glucoside, caftaric acid vanilloyl pentoside, p-coumaric acid-erythroside, naringenin hexose derivate, eriodictyol-glucoside, taxifolin-pentoside, quercetin-glucuronide-glucoside, malylated kaempferol-glucoside, and resveratrol dimer. These novel V. vinifera L. grape components were identified based on their MSn fragmentation profile. This data represents valuable information that may be useful to oenological management and to valorise these varieties as sources of bioactive compounds.
Resumo:
A novel analytical approach, based on a miniaturized extraction technique, the microextraction by packed sorbent (MEPS), followed by ultrahigh pressure liquid chromatography (UHPLC) separation combined with a photodiode array (PDA) detection, has been developed and validated for the quantitative determination of sixteen biologically active phenolic constituents of wine. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (linearity, sensitivity, selectivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters on the MEPS performance such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). The wine bioactive phenolics were eluted by 250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method gave satisfactory results in terms of linearity with r2-values > 0.9986 within the established concentration range. The LOD varied from 85 ng mL−1 (ferulic acid) to 0.32 μg mL−1 ((+)-catechin), whereas the LOQ values from 0.028 μg mL−1 (ferulic acid) to 1.08 μg mL−1 ((+)-catechin). Typical recoveries ranged between 81.1 and 99.6% for red wines and between 77.1 and 99.3% for white wines, with relative standard deviations (RSD) no larger than 10%. The extraction yields of the MEPSC8/UHPLC–PDA methodology were found between 78.1 (syringic acid) and 99.6% (o-coumaric acid) for red wines and between 76.2 and 99.1% for white wines. The inter-day precision, expressed as the relative standard deviation (RSD%), varied between 0.2% (p-coumaric and o-coumaric acids) and 7.5% (gentisic acid) while the intra-day precision between 0.2% (o-coumaric and cinnamic acids) and 4.7% (gallic acid and (−)-epicatechin). On the basis of analytical validation, it is shown that the MEPSC8/UHPLC–PDA methodology proves to be an improved, reliable, and ultra-fast approach for wine bioactive phenolics analysis, because of its capability for determining simultaneously in a single chromatographic run several bioactive metabolites with high sensitivity, selectivity and resolving power within only 10 min. Preliminary studies have been carried out on 34 real whole wine samples, in order to assess the performance of the described procedure. The new approach offers decreased sample preparation and analysis time, and moreover is cheaper, more environmentally friendly and easier to perform as compared to traditional methodologies.