892 resultados para performance studies
Resumo:
One of the fastest expanding areas of computer exploitation is in embedded systems, whose prime function is not that of computing, but which nevertheless require information processing in order to carry out their prime function. Advances in hardware technology have made multi microprocessor systems a viable alternative to uniprocessor systems in many embedded application areas. This thesis reports the results of investigations carried out on multi microprocessors oriented towards embedded applications, with a view to enhancing throughput and reliability. An ideal controller for multiprocessor operation is developed which would smoothen sharing of routines and enable more powerful and efficient code I data interchange. Results of performance evaluation are appended.A typical application scenario is presented, which calls for classifying tasks based on characteristic features that were identified. The different classes are introduced along with a partitioned storage scheme. Theoretical analysis is also given. A review of schemes available for reducing disc access time is carried out and a new scheme presented. This is found to speed up data base transactions in embedded systems. The significance of software maintenance and adaptation in such applications is highlighted. A novel scheme of prov1d1ng a maintenance folio to system firmware is presented, alongwith experimental results. Processing reliability can be enhanced if facility exists to check if a particular instruction in a stream is appropriate. Likelihood of occurrence of a particular instruction would be more prudent if number of instructions in the set is less. A new organisation is derived to form the basement for further work. Some early results that would help steer the course of the work are presented.
Resumo:
Invertase was immobilized on acid activated montmorillonite via two independent procedures, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and their activity was tested in a fixed bed reactor. XRD revealed that the enzyme was situated on the periphery of the clay and the side chains of different amino acid residues were involved in intercalation with the clay matrix. NMR demonstrated that tetrahedral Al was linked to the enzyme during adsorption and the octahedral Al was involved during covalent binding. Secondary interaction of the enzyme with Al was also observed. N2 adsorption studies showed that covalent binding of enzymes caused pore blockage since the highly polymeric species were located at the pore entrance. The fixed bed reactor proved to be efficient for the immobilized invertase. The optimum pH and pH stability improved upon immobilization. The kinetic parameters calculated also showed an enhanced efficiency of the immobilized systems. They could be used continuously for long period. Covalently bound invertase demonstrated greater operational stability.
Resumo:
Precipitated silica is the most promising alternative for carbon black in tyre tread compounds due to its improved performance in terms of rolling resistance and wet grip.But its poor processability is a serious limitation to its commercial application.This thesis suggests a novel route for the incorporation of silica in rubbers,i.e.,precipitation of silica in rubber latex followed by coagulation of the latex to get rubber-silica maseterbatch.Composites with in situ precipitated silica showed improved processability and mechanical properties,when compared to conventional silica composites.
Resumo:
School of Management Studies, Cochin University of Science and Technology
Resumo:
Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.
Resumo:
The prime intension of the present work was a synthetic investigation of the preparation, surface properties and catalytic activity of some transition metal substituted copper chromite catalysts. Homogeneous co-precipitation method is employed for the preparation of catalysts. Since the knowledge about the structure and composition of the surface is critical in explaining the reactivity and selectivity of a solid catalyst. a systematic investigation of the physico-chemical properties of the prepared systems was carried out. The catalytic activity of these systems has also been measured in several oxidation reactions of industrial as well as environmental relevance. The thesis is dedicated to several aspects of chromite spinels giving emphasis to its preparation, characterization and catalytic performance towards oxidation reactions.
Resumo:
This thesis deals with the use of simulation as a problem-solving tool to solve a few logistic system related problems. More specifically it relates to studies on transport terminals. Transport terminals are key elements in the supply chains of industrial systems. One of the problems related to use of simulation is that of the multiplicity of models needed to study different problems. There is a need for development of methodologies related to conceptual modelling which will help reduce the number of models needed. Three different logistic terminal systems Viz. a railway yard, container terminal of apart and airport terminal were selected as cases for this study. The standard methodology for simulation development consisting of system study and data collection, conceptual model design, detailed model design and development, model verification and validation, experimentation, and analysis of results, reporting of finding were carried out. We found that models could be classified into tightly pre-scheduled, moderately pre-scheduled and unscheduled systems. Three types simulation models( called TYPE 1, TYPE 2 and TYPE 3) of various terminal operations were developed in the simulation package Extend. All models were of the type discrete-event simulation. Simulation models were successfully used to help solve strategic, tactical and operational problems related to three important logistic terminals as set in our objectives. From the point of contribution to conceptual modelling we have demonstrated that clubbing problems into operational, tactical and strategic and matching them with tightly pre-scheduled, moderately pre-scheduled and unscheduled systems is a good workable approach which reduces the number of models needed to study different terminal related problems.
Resumo:
Gabion faced re.taining walls are essentially semi rigid structures that can generally accommodate large lateral and vertical movements without excessive structural distress. Because of this inherent feature, they offer technical and economical advantage over the conventional concrete gravity retaining walls. Although they can be constructed either as gravity type or reinforced soil type, this work mainly deals with gabion faced reinforced earth walls as they are more suitable to larger heights. The main focus of the present investigation was the development of a viable plane strain two dimensional non linear finite element analysis code which can predict the stress - strain behaviour of gabion faced retaining walls - both gravity type and reinforced soil type. The gabion facing, backfill soil, In - situ soil and foundation soil were modelled using 20 four noded isoparametric quadrilateral elements. The confinement provided by the gabion boxes was converted into an induced apparent cohesion as per the membrane correction theory proposed by Henkel and Gilbert (1952). The mesh reinforcement was modelled using 20 two noded linear truss elements. The interactions between the soil and the mesh reinforcement as well as the facing and backfill were modelled using 20 four noded zero thickness line interface elements (Desai et al., 1974) by incorporating the nonlinear hyperbolic formulation for the tangential shear stiffness. The well known hyperbolic formulation by Ouncan and Chang (1970) was used for modelling the non - linearity of the soil matrix. The failure of soil matrix, gabion facing and the interfaces were modelled using Mohr - Coulomb failure criterion. The construction stages were also modelled.Experimental investigations were conducted on small scale model walls (both in field as well as in laboratory) to suggest an alternative fill material for the gabion faced retaining walls. The same were also used to validate the finite element programme developed as a part of the study. The studies were conducted using different types of gabion fill materials. The variation was achieved by placing coarse aggregate and quarry dust in different proportions as layers one above the other or they were mixed together in the required proportions. The deformation of the wall face was measured and the behaviour of the walls with the variation of fill materials was analysed. It was seen that 25% of the fill material in gabions can be replaced by a soft material (any locally available material) without affecting the deformation behaviour to large extents. In circumstances where deformation can be allowed to some extents, even up to 50% replacement with soft material can be possible.The developed finite element code was validated using experimental test results and other published results. Encouraged by the close comparison between the theory and experiments, an extensive and systematic parametric study was conducted, in order to gain a closer understanding of the behaviour of the system. Geometric parameters as well as material parameters were varied to understand their effect on the behaviour of the walls. The final phase of the study consisted of developing a simplified method for the design of gabion faced retaining walls. The design was based on the limit state method considering both the stability and deformation criteria. The design parameters were selected for the system and converted to dimensionless parameters. Thus the procedure for fixing the dimensions of the wall was simplified by eliminating the conventional trial and error procedure. Handy design charts were developed which would prove as a hands - on - tool to the design engineers at site. Economic studies were also conducted to prove the cost effectiveness of the structures with respect to the conventional RCC gravity walls and cost prediction models and cost breakdown ratios were proposed. The studies as a whole are expected to contribute substantially to understand the actual behaviour of gabion faced retaining wall systems with particular reference to the lateral deformations.
Resumo:
Biosocial profile can produce variations in Gender-role Orientation of executives. Biosocial variables are not responsible for the development of Communication Style except in cases of number of children, dual career family and fathers occupation. Gender-role orientation is a function of Communication Style. Executive performance is a function of Communication Style.Gender- role orientation can have a decisive influence on executive performance. The cumulative effect of Communication Style and gender role orientation can produce variations in executive performance. Open Communication Style is predominantly responsible for the creation of a higher level executive performance than other Communication Styles.
Resumo:
Demand on magnesium and its alloys is increased significantly in the automotive industry because of their great potential in reducing the weight of components, thus resulting in improvement in fuel efficiency of the vehicle. To date, most of Mg products have been fabricated by casting, especially, by die-casting because of its high productivity, suitable strength, acceptable quality & dimensional accuracy and the components produced through sand, gravity and low pressure die casting are small extent. In fact, higher solidification rate is possible only in high pressure die casting, which results in finer grain size. However, achieving high cooling rate in gravity casting using sand and permanent moulds is a difficult task, which ends with a coarser grain nature and exhibit poor mechanical properties, which is an important aspect of the performance in industrial applications. Grain refinement is technologically attractive because it generally does not adversely affect ductility and toughness, contrary to most other strengthening methods. Therefore formation of fine grain structure in these castings is crucial, in order to improve the mechanical properties of these cast components. Therefore, the present investigation is “GRAIN REFINEMENT STUDIES ON Mg AND Mg-Al BASED ALLOYS”. The primary objective of this present investigation is to study the effect of various grain refining inoculants (Al-4B, Al- 5TiB2 master alloys, Al4C3, Charcoal particles) on Pure Mg and Mg-Al alloys such as AZ31, AZ91 and study their grain refining mechanisms. The second objective of this work is to study the effect of superheating process on the grain size of AZ31, AZ91 Mg alloys with and without inoculants addition. In addition, to study the effect of grain refinement on the mechanical properties of Mg and Mg-Al alloys. The thesis is well organized with seven chapters and the details of the studies are given below in detail.
Resumo:
This study mainly deals with the structure of the motorised and mechanised trawl fishing fleet of Kerala, and assess the availability of resources and its extent of exploitation. The study is conducted by observing the performance of small motorised boats operating trawl nets from selected centers along the Kerala coast. The Study also deals with the type and material of construction of the propellers used in selected crafts and the efficiency of the propeller. The fuel consumption pattern of selected medium sized trawlers economics of operation of selected fishing crafts are analyzed through this study. The thesis also Suggest methods for reducing fuel consumption in trawling
Resumo:
There are a large number of commercial examples and property advantages of immiscible elastomer blends.73 Blends of natural rubber (NR) and polybutadiene (BR) have shown various advantages including heat stability, improved elasticity and abrasion resistance. Ethylene-propylene-diene-rubber (EPDM) blended with styrene-butadiene rubber (SBR) has shown improvements in ozone and chemical resistance with better compression set properties. Blends of EPDM and nitrile rubber (NBR) have been cited as a compromise for obtaining moderate oil and ozone resistance with improved low temperature properties. Neoprene (CR)/BR blends offer improved low temperature properties and abrasion resistance with better processing characteristics etc. However, in many of the commercial two-phase elastomer blends, segregation of the crosslinking agents, carbon black or antioxidants preferentially into one phase can result in failure to attain optimum properties. Soluble and insoluble compounding ingredients are found to be preferentially concentrated in one phase. The balance of optimum curing of both phases therefore presents a difficult problem. It has been the aim of this study to improve the performance of commercially important elastomer blends such as natural rubber (NR)/styrene-butadiene rubber (SBR) and natural rubber/polybutadiene rubber (BR) by industrially viable procedures
Resumo:
Laser-induced damage is the principal limiting constraint in the design and operation of high-power laser systems used in fusion and other high-energy laser applications. Therefore, an understanding of the mechanisms which cause the radiation damage to the components employed in building a laser and a knowledge of the damage threshold of these materials are of great importance in designing a laser system and to operate it without appreciable degradation in performance. This thesis, even though covers three distinct problems for investigations using a dye Q-switched multimode Nd:glass laser operating at 1062 nm and emitting 25 ns (FWHM) pulses, lays its main thrust on damage threshold studies on thin films. Using the same glass laser two-photon excited fluorescence in rhodamine 6G and generation and characterisation of a carbon plasma have also been carried out. The thesis is presented in seven chapters.
Resumo:
Rubber has become an indispensable material in Ocean technology. Rubber components play critical roles such as sealing, damping, environmental protection, electrical insulation etc. in most under water engineering applications. Technology driven innovations in electro acoustic transducers and other sophisticated end uses have enabled quantum jump in the quality and reliability of rubber components. Under water electro acoustic transducers use rubbers as a critical material in their construction. Work in this field has lead to highly reliable and high performance materials which has enhanced service life of transducers to the extent of 1015 years. Present work concentrates on these materials. Conventional rubbers are inadequate to meet many of the stringent functional of the requirements. There exists large gap of information in the rubber technology of under water rubbers, particularly in the context of under water electro acoustic transducers. Present study is towards filling up the gaps of information in this crucial area. The research work has been in the area of compounding and characterisation of rubbers for use in under water electro acoustic transducers. The study also covers specific material system such as encapsulation material, baffle material, seal material, etc. Life prediction techniques of under water rubbers in general has been established with reference to more than one functional property. This thesis is divided into 6 chapters.