957 resultados para object orientated user interface
Resumo:
Funding for this study was received from the Chief Scientist Office for Scotland. We would like to thank Asthma UK and Asthma UK Scotland for facilitating the advertisement of the study pilot and consultative user group. Thanks to Dr Mark Grindle for his helpful discussions concerning narrative. Thanks also to Mr Mark Haldane who designed the characters, backgrounds, and user interface used within the 3D computer animation. Particular thanks to the participants of the consultative user group for their enthusiasm, comments, and suggestions at all stages of the intervention design.
Resumo:
Relatório de Estágio para a obtenção do grau de Mestre na área de Educação e Comunicação Multimédia
Resumo:
The application of pharmacokinetic modelling within the drug development field essentially allows one to develop a quantitative description of the temporal behaviour of a compound of interest at a tissue/organ level, by identifying and defining relationships between a dose of a drug and dependent variables. In order to understand and characterise the pharmacokinetics of a drug, it is often helpful to employ pharmacokinetic modelling using empirical or mechanistic approaches. Pharmacokinetic models can be developed within mathematical and statistical commercial software such as MATLAB using traditional mathematical and computation coding, or by using the Simbiology Toolbox available within MATLAB for a graphical user interface approach to developing pharmacokinetic (PBPK) models. For formulations dosed orally, a prerequisite for clinical activity is the entry of the drug into the systemic circulation.
Resumo:
Precision medicine is an emerging approach to disease treatment and prevention that considers variability in patient genes, environment, and lifestyle. However, little has been written about how such research impacts emergency care. Recent advances in analytical techniques have made it possible to characterize patients in a more comprehensive and sophisticated fashion at the molecular level, promising highly individualized diagnosis and treatment. Among these techniques are various systematic molecular phenotyping analyses (e.g., genomics, transcriptomics, proteomics, and metabolomics). Although a number of emergency physicians use such techniques in their research, widespread discussion of these approaches has been lacking in the emergency care literature and many emergency physicians may be unfamiliar with them. In this article, we briefly review the underpinnings of such studies, note how they already impact acute care, discuss areas in which they might soon be applied, and identify challenges in translation to the emergency department (ED). While such techniques hold much promise, it is unclear whether the obstacles to translating their findings to the ED will be overcome in the near future. Such obstacles include validation, cost, turnaround time, user interface, decision support, standardization, and adoption by end-users.
Resumo:
Esta investigación aborda el consumo que los jóvenes universitarios de España y Brasil realizan de las publicaciones para tabletas. A través del estudio de seis casos –las revistas españolas Don, VisàVis y Quality Sport, y los vespertinos brasileños O Globo a Mais, de Río de Janeiro; Estadão Noite, de Sao Paulo; y Diário do Nordeste Plus, de Fortaleza– se aplica una metodología cualitativa, el test de usabilidad, para detectar qué aspectos ralentizan y entorpecen la navegación en las nuevas generaciones de usuarios de medios móviles. A pesar de la influencia de las revistas impresas en la configuración de las publicaciones para tableta, los datos muestran que el usuario necesita “entrenarse” para conocer unas opciones de interacción a veces poco intuitivas o para las que carece de la madurez visual necesaria. Por ello las publicaciones más sencillas obtienen los mejores resultados de usabilidad.
Resumo:
The physical appearance and behavior of a robot is an important asset in terms of Human-Computer Interaction. Multimodality is also fundamental, as we humans usually expect to interact in a natural way with voice, gestures, etc. People approach complex interaction devices with stances similar to those used in their interaction with other people. In this paper we describe a robot head, currently under development, that aims to be a multimodal (vision, voice, gestures,...) perceptual user interface.
Resumo:
Metagenomic studies use high-throughput sequence data to investigate microbial communities in situ. However, considerable challenges remain in the analysis of these data, particularly with regard to speed and reliable analysis of microbial species as opposed to higher level taxa such as phyla. We here present Genometa, a computationally undemanding graphical user interface program that enables identification of bacterial species and gene content from datasets generated by inexpensive high-throughput short read sequencing technologies. Our approach was first verified on two simulated metagenomic short read datasets, detecting 100% and 94% of the bacterial species included with few false positives or false negatives. Subsequent comparative benchmarking analysis against three popular metagenomic algorithms on an Illumina human gut dataset revealed Genometa to attribute the most reads to bacteria at species level (i.e. including all strains of that species) and demonstrate similar or better accuracy than the other programs. Lastly, speed was demonstrated to be many times that of BLAST due to the use of modern short read aligners. Our method is highly accurate if bacteria in the sample are represented by genomes in the reference sequence but cannot find species absent from the reference. This method is one of the most user-friendly and resource efficient approaches and is thus feasible for rapidly analysing millions of short reads on a personal computer.
Resumo:
Syftet med denna studie är att undersöka fördröjningsskillnader inom användargränssnitt mellan nativeutvecklade appar (utveckling till varje plattform) och appar av typen generated apps. Eftersom arbetet syftar till att bidra med information om prestanda ansågs en experimentell metod vara det bästa valet. Mätning av laddningstider gjordes med hjälp av en videokamera som filmade utförandet av experimenten vilket gjorde metoden simpel och liknar det som en användare kommer att uppleva. Avgränsning till plattformarna Android och iOS gjordes där Xamarin valdes som ramverk inom tekniker som skapar generated apps. Mätdata från experiment som undersökte laddningstider, experiment med användare som hanterade listors respons samt undersökning av CPU och minnesanvändning tyder på ett återkommande mönster. Xamarin Forms med XAML är den teknik som presterat sämst under experimenten som sedan följs av Xamarin Forms. Xamarin Android/iOS hade inte lika stora prestandaförluster jämfört med nativeutvecklade delar. Generellt hanterar Xamarin Forms telefonens resurser sämre än vad Xamarin Android/iOS och native gör. Resultat från studien kan användas som beslutsstöd vid val av teknik. Studien bidrar även med data som kan användas vid vidare forskning inom området.
Resumo:
In modern society, the body health is a very important issue to everyone. With the development of the science and technology, the new and developed body health monitoring device and technology will play the key role in the daily medical activities. This paper focus on making progress in the design of the wearable vital sign system. A vital sign monitoring system has been proposed and designed. The whole detection system is composed of signal collecting subsystem, signal processing subsystem, short-range wireless communication subsystem and user interface subsystem. The signal collecting subsystem is composed of light source and photo diode, after emiting light of two different wavelength, the photo diode collects the light signal reflected by human body tissue. The signal processing subsystem is based on the analog front end AFE4490 and peripheral circuits, the collected analog signal would be filtered and converted into digital signal in this stage. After a series of processing, the signal would be transmitted to the short-range wireless communication subsystem through SPI, this subsystem is mainly based on Bluetooth 4.0 protocol and ultra-low power System on Chip(SoC) nRF51822. Finally, the signal would be transmitted to the user end. After proposing and building the system, this paper focus on the research of the key component in the system, that is, the photo detector. Based on the study of the perovskite materials, a low temperature processed photo detector has been proposed, designed and researched. The device is made up of light absorbing layer, electron transporting and hole blocking layer, hole transporting and electron blocking layer, conductive substrate layer and metal electrode layer. The light absorbing layer is the important part of whole device, and it is fabricated by perovskite materials. After accepting the light, the electron-hole pair would be produced in this layer, and due to the energy level difference, the electron and hole produced would be transmitted to metal electrode and conductive substrate electrode through electron transporting layer and hole transporting layer respectively. In this way the response current would be produced. Based on this structure, the specific fabrication procedure including substrate cleaning; PEDOT:PSS layer preparation; pervoskite layer preparation; PCBM layer preparation; C60, BCP, and Ag electrode layer preparation. After the device fabrication, a series of morphological characterization and performance testing has been done. The testing procedure including film-forming quality inspection, response current and light wavelength analysis, linearity and response time and other optical and electrical properties testing. The testing result shows that the membrane has been fabricated uniformly; the device can produce obvious response current to the incident light with the wavelength from 350nm to 800nm, and the response current could be changed along with the light wavelength. When the light wavelength keeps constant, there exists a good linear relationship between the intensity of the response current and the power of the incident light, based on which the device could be used as the photo detector to collect the light information. During the changing period of the light signal, the response time of the device is several microseconds, which is acceptable working as a photo detector in our system. The testing results show that the device has good electronic and optical properties, and the fabrication procedure is also repeatable, the properties of the devices has good uniformity, which illustrates the fabrication method and procedure could be used to build the photo detector in our wearable system. Based on a series of testing results, the paper has drawn the conclusion that the photo detector fabricated could be integrated on the flexible substrate and is also suitable for the monitoring system proposed, thus made some progress on the research of the wearable monitoring system and device. Finally, some future prospect in system design aspect and device design and fabrication aspect are proposed.
Resumo:
Bikeshares promote healthy lifestyles and sustainability among commuters, casual riders, and tourists. However, the central pillar of modern systems, the bike station, cannot be easily integrated into a compact college campus. Fixed stations lack the flexibility to meet the needs of college students who make quick, short-distance trips. Additionally, the necessary cost of implementing and maintaining each station prohibits increasing the number of stations for user convenience. Therefore, the team developed a stationless bikeshare based on a smartlock permanently attached to bicycles in the system. The smartlock system design incorporates several innovative approaches to provide usability, security, and reliability that overcome the limitations of a station centered design. A focus group discussion allowed the team to receive feedback on the early lock, system, and website designs, identify improvements and craft a pleasant user experience. The team designed a unique, two-step lock system that is intuitive to operate while mitigating user error. To ensure security, user access is limited through near field ii communications (NFC) technology connected to a mechatronic release system. The said system relied on a NFC module and a servo working through an Arduino microcontroller coded in the Arduino IDE. To track rentals and maintain the system, each bike is fitted with an XBee module to communicate with a scalable ZigBee mesh network. The network allows for bidirectional, real-time communication with a Meteor.js web application, which enables user and administrator functions through an intuitive user interface available on mobile and desktop. The development of an independent smartlock to replace bike stations is essential to meet the needs of the modern college student. With the goal of creating a bikeshare that better serves college students, Team BIKES has laid the framework for a system that is affordable, easily adaptable, and implementable on any university expressing an interest in bringing a bikeshare to its campus.
Resumo:
Työn tavoitteena oli toimintatutkimuksen kautta tutkia ketterän ohjelmistokehityksen keinoin toteutetun käyttöliittymäkehityksen kykyä vastata asiakkaiden todellisiin tarpeisiin. Työssä haettiin tapaustutkimusyritykselle olemassa olevan työkalun uuden version käyttöliittymän toteutusvaihtoehtoja ja toteutettiin korkean tarkkuuden prototyyppejä näitä hyödyntäen. Ketterän ohjelmistokehityksen arvot ja periaatteet soveltuivat kehitysprosessissa käytettäviksi erinomaisesti. Iteratiivinen lähestymistapa kehitykseen ja läheinen yhteistyö tapaustutkimusyrityksen ja kandidaatintyöntekijän kanssa mahdollistivat yrityksen odotusten täyttämisen. Työkalun käyttöliittymä saatettiin tasolle, joka mahdollistaa jatkokehittämisen aloituksen. Kattavamman testauttamisen sisällyttäminen kehitysprosessiin olisi edesauttanut vielä paremman lopputuloksen saavuttamista.
Resumo:
This article discusses the potential of audio games based on the evaluation of three projects: a story-driven audio role-playing game (RPG), an interactive audiobook with RPG elements, and a set of casual sound-based games. The potential is understood, both in popularity and playability terms. The first factor is connected to the degree of players’ interest, while the second one to the degree of their engagement in sound-based game worlds. Although presented projects are embedded within the landscape of past and contemporary audio games and gaming platforms, the authors reach into the near future, concluding with possible development directions for this non-visual interactive entertainment.
Resumo:
A sensing device for a touchless, hand gesture, user interface based on an inexpensive passive infrared pyroelectric detector array is presented. The 2 x 2 element sensor responds to changing infrared radiation generated by hand movement over the array. The sensing range is from a few millimetres to tens of centimetres. The low power consumption (< 50 μW) enables the sensor’s use in mobile devices and in low energy applications. Detection rates of 77% have been demonstrated using a prototype system that differentiates the four main hand motion trajectories – up, down, left and right. This device allows greater non-contact control capability without an increase in size, cost or power consumption over existing on/off devices.
Resumo:
The traditional process of filling the medicine trays and dispensing the medicines to the patients in the hospitals is manually done by reading the printed paper medicine chart. This process can be very strenuous and error-prone, given the number of sub-tasks involved in the entire workflow and the dynamic nature of the work environment. Therefore, efforts are being made to digitalise the medication dispensation process by introducing a mobile application called Smart Dosing application. The introduction of the Smart Dosing application into hospital workflow raises security concerns and calls for security requirement analysis. This thesis is written as a part of the smart medication management project at Embedded Systems Laboratory, A° bo Akademi University. The project aims at digitising the medicine dispensation process by integrating information from various health systems, and making them available through the Smart Dosing application. This application is intended to be used on a tablet computer which will be incorporated on the medicine tray. The smart medication management system include the medicine tray, the tablet device, and the medicine cups with the cup holders. Introducing the Smart Dosing application should not interfere with the existing process carried out by the nurses, and it should result in minimum modifications to the tray design and the workflow. The re-designing of the tray would include integrating the device running the application into the tray in a manner that the users find it convenient and make less errors while using it. The main objective of this thesis is to enhance the security of the hospital medicine dispensation process by ensuring the security of the Smart Dosing application at various levels. The methods used for writing this thesis was to analyse how the tray design, and the application user interface design can help prevent errors and what secure technology choices have to be made before starting the development of the next prototype of the Smart Dosing application. The thesis first understands the context of the use of the application, the end-users and their needs, and the errors made in everyday medication dispensation workflow by continuous discussions with the nursing researchers. The thesis then gains insight to the vulnerabilities, threats and risks of using mobile application in hospital medication dispensation process. The resulting list of security requirements was made by analysing the previously built prototype of the Smart Dosing application, continuous interactive discussions with the nursing researchers, and an exhaustive stateof- the-art study on security risks of using mobile applications in hospital context. The thesis also uses Octave Allegro method to make the readers understand the likelihood and impact of threats, and what steps should be taken to prevent or fix them. The security requirements obtained, as a result, are a starting point for the developers of the next iteration of the prototype for the Smart Dosing application.
Resumo:
This thesis introduces the L1 Adaptive Control Toolbox, a set of tools implemented in Matlab that aid in the design process of an L1 adaptive controller and enable the user to construct simulations of the closed-loop system to verify its performance. Following a brief review of the existing theory on L1 adaptive controllers, the interface of the toolbox is presented, including a description of the functions accessible to the user. Two novel algorithms for determining the required sampling period of a piecewise constant adaptive law are presented and their implementation in the toolbox is discussed. The detailed description of the structure of the toolbox is provided as well as a discussion of the implementation of the creation of simulations. Finally, the graphical user interface is presented and described in detail, including the graphical design tools provided for the development of the filter C(s). The thesis closes with suggestions for further improvement of the toolbox.