900 resultados para mouse bioassay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by (1)H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological consequences of constitutive fibroblast growth factor-4 (fgf4) expression have been analysed during anterior CNS development of mouse chimeric embryos. Severe mutant embryos exhibit exencephaly, absence of eye development and anomalous differentiation of neuropithelium. These embryos also show ectopic limb buds resembling the early phases of limb development. Because our results show that anterior CNS in those chimeric embrios does not express shh ectopically, we suggest that malformations may be due to interference between the ectopic expression of fgf4 in the cephalic area and the receptors for the members of the FGF family that regulate brain and eye development, namely fgf8. If this is correct, the results indirectly suport the crucial role of fgf8 in patterning the anterior CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many tissues including pancreatic beta-cells. METHODS: This study investigates the impact of MIF on islet transplantation using MIF knock-out (MIFko) mice. RESULTS: Early islet function, assessed with a syngeneic marginal islet mass transplant model, was enhanced when using MIFko islets (P<0.05 compared with wild-type [WT] controls). This result was supported by increased in vitro resistance of MIFko islets to apoptosis (terminal deoxynucleotide tranferase-mediated dUTP nick-end labeling assay), and by improved glucose metabolism (lower blood glucose levels, reduced glucose areas under curve and higher insulin release during intraperitoneal glucose challenges, and in vitro in the absence of MIF, P<0.01). The beneficial impact of MIFko islets was insufficient to delay allogeneic islet rejection. However, the rejection of WT islet allografts was marginally delayed in MIFko recipients by 6 days when compared with WT recipient (P<0.05). This effect is supported by the lower activity of MIF-deficient macrophages, assessed in vitro and in vivo by cotransplantation of islet/macrophages. Leukocyte infiltration of the graft and donor-specific lymphocyte activity (mixed lymphocyte reaction, interferon gamma ELISPOT) were similar in both groups. CONCLUSION: These data indicate that targeting MIF has the potential to improve early function after syngeneic islet transplantation, but has only a marginal impact on allogeneic rejection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:: Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. METHODS:: We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. RESULTS:: In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6-1.9) (median [95% CI]) to 2.3 g (2.2-2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4-15.5) to 30.0 s (21.8-31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. CONCLUSIONS:: At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After mouse mammary tumor virus (MMTV) infection, B lymphocytes present a superantigen (Sag) and receive help from the unlimited number of CD4(+) T cells expressing Sag-specific T-cell receptor Vbeta elements. The infected B cells divide and differentiate, similarly to what occurs in classical B-cell responses. The amplification of Sag-reactive T cells can be considered a primary immune response. Since B cells are usually not efficient in the activation of naive T cells, we addressed the question of whether professional antigen-presenting cells such as dendritic cells (DCs) are responsible for T-cell priming. We show here, using MMTV(SIM), a viral isolate which requires major histocompatibility complex class II I-E expression to induce a strong Sag response in vivo, that transgenic mice expressing I-E exclusively on DCs (I-EalphaDC tg) reveal a strong Sag response. This Sag response was dependent on the presence of B cells, as indicated by the absence of stimulation in I-EalphaDC tg mice lacking B cells (I-EalphaDC tg muMT(-/-)), even if these B cells lack I-E expression. Furthermore, the involvement of either residual transgene expression by B cells or transfer of I-E from DCs to B cells was excluded by the use of mixed bone marrow chimeras. Our results indicate that after priming by DCs in the context of I-E, the MMTV(SIM) Sag can be recognized on the surface of B cells in the context of I-A. The most likely physiological relevance of the lowering of the antigen threshold required for T-cell/B-cell collaboration after DC priming is to allow B cells with a low affinity for antigen to receive T-cell help in a primary immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Current tools for analgesia are often only partially successful, thus investigations of new targets for pain therapy stimulate great interest. Consequent to peripheral nerve injury, c-Jun N-terminal kinase (JNK) activity in cells of the dorsal root ganglia (DRGs) and spinal cord is involved in triggering neuropathic pain. However, the relative contribution of distinct JNK isoforms is unclear. Using knockout mice for single isoforms, and blockade of JNK activity by a peptide inhibitor, we have used behavioral tests to analyze the contribution of JNK in the development of neuropathic pain after unilateral sciatic nerve transection. In addition, immunohistochemical labelling for the growth associated protein (GAP)-43 and Calcitonin Gene Related Peptide (CGRP) in DRGs was used to relate injury related compensatory growth to altered sensory function. RESULTS: Peripheral nerve injury produced pain-related behavior on the ipsilateral hindpaw, accompanied by an increase in the percentage of GAP43-immunoreactive (IR) neurons and a decrease in the percentage of CGRP-IR neurons in the lumbar DRGs. The JNK inhibitor, D-JNKI-1, successfully modulated the effects of the sciatic nerve transection. The onset of neuropathic pain was not prevented by the deletion of a single JNK isoform, leading us to conclude that all JNK isoforms collectively contribute to maintain neuropathy. Autotomy behavior, typically induced by sciatic nerve axotomy, was absent in both the JNK1 and JNK3 knockout mice. CONCLUSIONS: JNK signaling plays an important role in regulating pain threshold: the inhibition of all of the JNK isoforms prevents the onset of neuropathic pain, while the deletion of a single splice JNK isoform mitigates established sensory abnormalities. JNK inactivation also has an effect on axonal sprouting following peripheral nerve injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary : Four distinct olfactory subsystems compose the mouse olfactory system, the main olfactory epithelium (MOE), the septal organ of Masera (SO), the vomeronasal organ (VNO) and the Grueneberg ganglion (GG). They are implicated in the sensory modalities of the animal and they evolved to analyse and discriminate molecules carrying chemical messages, such as odorants and pheromones. In this thesis, the VNO, principally implicated in pheromonal communications as well as the GG, which had no function attributed until this work, were investigated from their morphology to their physiological functions, using an array of biochemical and physiological methods. First, the roles of a particular protein, the CNGA4 ion channel, were investigated in the VNO. In the MOE, CNGA4 is expressed as a modulatory channel subunit implicated in odour discrimination and adaptation. Interestingly, this calcium channel is the unique member of the cyclic nucleotide-gated (CNG) family to be expressed in the VNO and up to this work its functions remained unknown. Using a combination of transgenic and knockout mice, as well as histological and physiological approaches, we have characterized CNGA4 expression in the VNO. A strong expression in immature neurons was found as well as in the microvilli of mature neurons (putative site of chemodetection). Interestingly and confirming its dual localisation, the genetic invalidation of the CNGA4 channel has, as consequences, a strong impairment in vomeronasal maturation as well as deficit in pheromone sensing. Thus the CNGA4 channel appears to be a multifunctional protein in the mouse VNO playing essential role(s) in this organ. During the second part of the work, the morphology of the most recently described olfactory subsystem, the Grueneberg ganglion, was investigated in detail. Interestingly we found that glial cells and ciliated neurons compose this olfactory ganglion. This particular morphological aspect was similar to the olfactory AWC neurons from C. elegans which was used for further comparisons. Thus as for AWC neurons, we found that GG neurons are sensitive to temperature changes and are able to detect highly volatile molecules. Indeed, the presence of alarm pheromones (APs) secreted by stressed mice, elicit strong cellular responses, as well as a GG dependent behavioural changes. Investigations on the signaling elements present in GG neurons revealed that, as for AWC neurons, or pGC-D expressing neurons from the MOE, proteins participating in a cGMP pathway were found in GG neurons such as pGC-G and CNGA3 channels. These two proteins might be implicated in chemosensing as well as in thermosensing, two apparent properties of this organ. In this thesis, the multisensory modalities of two mouse olfactory subsystems were described and are related to a high degree of complexity required for the animal to sense its environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the potential delay of the retinal degeneration in rd1/rd1 mice using recombinant human glial cell line-derived neurotrophic factor (rhGDNF) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) microspheres. METHODS: rhGDNF-loaded PLGA microspheres were prepared using a water in oil in water (w/o/w) emulsion solvent extraction-evaporation process. In vitro, the rhGDNF release profile was assessed using radiolabeled factor. In vivo, rhGDNF microspheres, blank microspheres, or microspheres loaded with inactivated rhGDNF were injected into the vitreous of rd1/rd1 mice at postnatal day 11 (PN11). The extent of retinal degeneration was examined at PN28 using rhodopsin immunohistochemistry on whole flat-mount retinas, outer nuclear layer (ONL) cell counting on histology sections, and electroretinogram tracings. Immunohistochemical reactions for glial fibrillary acidic protein (GFAP), F4/80, and rhodopsin were performed on cryosections. RESULTS: Significant delay of rod photoreceptors degeneration was observed in mice receiving the rhGDNF-loaded microspheres compared to either untreated mice or to mice receiving blank or inactivated rhGDNF microspheres. The degeneration delay in the eyes receiving the rhGDNF microspheres was illustrated by the increased rhodopsin positive signals, the preservation of significantly higher number of cell nuclei within the ONL, and significant b-wave increase. A reduction of the subretinal glial proliferation was also observed in these treated eyes. No significant intraocular inflammatory reaction was observed after the intravitreous injection of the various microspheres. CONCLUSIONS: A single intravitreous injection of rhGDNF-loaded microspheres slows the retinal degeneration processes in rd1/rd1 mice. The use of injectable, biodegradable polymeric systems in the vitreous enables the efficient delivery of therapeutic proteins for the treatment of retinal diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mouse Mammary Tumor Virus (MMTV) long terminal repeat contains an open reading frame (orf) of 960 nucleotides encoding a 36 kDa polypeptide with a putative transmembrane domain and five N-glycosylation sites in the N-terminal part of the protein. Transgenic mice bearing either the complete or the 3' terminal half of the orf sequence of MMTV-GR under the control of the SV40 promoter were raised. As shown previously by FACS analysis transgenic mice which express the complete orf gene have a significant deletion of V beta 14 expressing T cells at 6 weeks of age. Here we show that no clonal deletion of V beta 14 bearing T cells takes place in transgenic mice that contain orf sequences from the fifth ATG to the termination codon. The pattern of tissues expressing the truncated transgene was studied by the Polymerase Chain Reaction (PCR) and was very similar to the one obtained in the V beta 14 deleting animals. These data suggest that the amino-terminal portion of the ORF protein (pORF) is required for a superantigen function, while our previous data indicated that determinants from the carboxy-terminus play an important role for TCR V beta specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until now it was thought that the retrovirus mouse mammary tumor virus preferentially infects B cells, which thereafter proliferate and differentiate due to superantigen-mediated T cell help. We describe in this study that dendritic cells are infectable at levels comparable to B cells in the first days after virus injection. Moreover, IgM knockout mice have chronically deleted superantigen-reactive T cells after MMTV injection, indicating that superantigen presentation by dendritic cells is sufficient for T cell deletion. In both subsets initially only few cells were infected, but there was an exponential increase in numbers of infected B cells due to superantigen-mediated T cell help, explaining that at the peak of the response infection is almost exclusively found in B cells. The level of infection in vivo was below 1 in 1000 dendritic cells or B cells. Infection levels in freshly isolated dendritic cells from spleen, Langerhans cells from skin, or bone marrow-derived dendritic cells were compared in an in vitro infection assay. Immature dendritic cells such as Langerhans cells or bone marrow-derived dendritic cells were infected 10- to 30-fold more efficiently than mature splenic dendritic cells. Bone marrow-derived dendritic cells carrying an endogenous mouse mammary tumor virus superantigen were highly efficient at inducing a superantigen response in vivo. These results highlight the importance of professional APC and efficient T cell priming for the establishment of a persistent infection by mouse mammary tumor virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In (1) H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure macromolecule spectrum. Furthermore, since a single spectrum is commonly used for quantification in multiple experiments, the impact of potential macromolecule signal variability, because of regional differences or pathologies, on metabolite quantification has to be assessed. In this study, we introduced a novel method to post-process measured macromolecule signals that offers a flexible and robust way of removing residual metabolite signals. This method was applied to investigate regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account. However, since no significant differences in metabolite quantification were detected, it was concluded that a single macromolecule spectrum can be generally used for the quantification of healthy mouse brain spectra. Alternatively, the study of a mouse model of human glioma showed several alterations of the macromolecule spectrum, including, but not limited to, increased mobile lipid signals, which had to be taken into account to avoid significant metabolite quantification errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME L'utilisation de la thérapie génique dans l'approche d'un traitement des maladies oculaires dégénératives, plus particulièrement de la rétinite pigmentaire, semble être très prometteuse (Acland et al. 2001). Parmi les vecteurs développés, les vecteurs lentiviraux (dérivé du virus humain HIV-1), permettent la transduction des photorécepteurs après injection sous-rétinienne chez la souris durant les premiers jours de vie. Cependant l'efficacité du transfert de gène est nettement plus limitée dans ce type cellulaire après injection chez l'adulte (Kostic et al. 2003). L'objet de notre étude est de déterminer si la présence d'une barrière physique produite au cours du développement, située entre les photorécepteurs et l'épithélium pigmentaire ainsi qu'entre les photorécepteurs eux-mêmes, est responsable de: la diminution de l'entrée en masse du virus dans les photorécepteurs, minimisant ainsi son efficacité chez la souris adulte. De précédentes recherches, chez le lapin, ont décrit la capacité d'enzymes spécifiques comme la Chondroïtinase ABC et la Neuraminidase X de modifier la structure de la matrice entourant les photorécepteurs (Inter Photoreceptor Matrix, IPM) par digestion de certains de ses constituants suite à leur injection dans l'espace sous-rétinien (Yao et al. 1990). Considérant l'IPM comme une barrière physique, capable de réduire l'efficacité de transduction des photorécepteurs chez la souris adulte, nous avons associé différentes enzymes simultanément à l'injection sous-rétinienne de vecteurs lentiviraux afin d'améliorer la transduction virale en fragilisant I'IPM, la rendant ainsi plus perméable à la diffusion du virus. L'injection sous-rétinienne de Neuraminidase X et de Chondroïtinase ABC chez la souris induit des modifications structurales de l'IPM qui se manifestent respectivement par la révélation ou la disparition de sites de liaison de la peanut agglutinin sur les photorécepteurs. L'injection simultanée de Neuraminidase X avec le vecteur viral contenant le transgène thérapeutique augmente significativement le nombre de photorécepteurs transduits (environ cinq fois). Nous avons en fait démontré que le traitement enzymatique augmente principalement la diffusion du lentivirus dans l'espace situé entre l'épithélium pigmentaire et les photorécepteurs. Le traitement à la Chondroïtinase ABC n'entraîne quant à elle qu'une légère amélioration non significative de la transduction. Cette étude montre qu'une meilleure connaissance de l'IPM ainsi que des substances capables de la modifier (enzymes, drogues etc.) pourrait aider à élaborer de nouvelles stratégies afin d'améliorer la distribution de vecteurs viraux dans la rétine adulte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early ocular development is controlled by a complex network of transcription factors, cell cycle regulators, and diffusible signalling molecules. Together, these molecules regulate cell proliferation and apoptosis, and specify retinal fate. NKX5-3 is a homeobox transcription factor implicated in eye development. The analysis of the 5'-flanking region of the mouse Nkx5-3 gene revealed a predicted TATA-less promoter sequence between -416 and -166 of the translation start site. To functionally characterise Nkx5-3 promoter activity, serial deletions of the promoter sequence were introduced in pGL-3 basic vector and promoter activity of these 5'- and 3'-deleted constructions was tested in HeLa and CHO cells. Transactivation assays identified a region between -350 and -296 exhibiting promoter-like activity. Combined analysis by deletions and point mutations showed that this sequence, containing multiple Sp1 binding sites was necessary to promote transcriptional activity. Binding of Sp1 to this region was confirmed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation, using an antibody specific for Sp1. Altogether, these results demonstrated that the immediate upstream region of Nkx5-3 gene possessed a strong intrinsic promoter activity in vitro, suggesting a potential role in Nkx5-3 transcription in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Glutathione (GSH) is the major cellular redox-regulator and antioxidant. Redox-imbalance due to genetically impaired GSH synthesis is among the risk factors for schizophrenia. Here we used a mouse model with chronic GSH deficit induced by knockout (KO) of the key GSH-synthesizing enzyme, glutamate-cysteine ligase modulatory subunit (GCLM).¦METHODS: With high-resolution magnetic resonance spectroscopy at 14.1 T, we determined the neurochemical profile of GCLM-KO, heterozygous, and wild-type mice in anterior cortex throughout development in a longitudinal study design.¦RESULTS: Chronic GSH deficit was accompanied by an elevation of glutamine (Gln), glutamate (Glu), Gln/Glu, N-acetylaspartate, myo-Inositol, lactate, and alanine. Changes were predominantly present at prepubertal ages (postnatal days 20 and 30). Treatment with N-acetylcysteine from gestation on normalized most neurochemical alterations to wild-type level.¦CONCLUSIONS: Changes observed in GCLM-KO anterior cortex, notably the increase in Gln, Glu, and Gln/Glu, were similar to those reported in early schizophrenia, emphasizing the link between redox imbalance and the disease and validating the model. The data also highlight the prepubertal period as a sensitive time for redox-related neurochemical changes and demonstrate beneficial effects of early N-acetylcysteine treatment. Moreover, the data demonstrate the translational value of magnetic resonance spectroscopy to study brain disease in preclinical models.