816 resultados para magnesium chloride
Resumo:
Ammonium chloride/mercuric chloride mixtures (molar ratio 2: 1) react at 350degreesC with Monel (Cu68Ni32) to yield (NH4)NiCl3 and mercury and copper amalgam, respectively. With larger amounts of (NH4)Cl in the reaction mixture, dark green (NH4)(2)(NH3)(x)[Ni(NH3)(2)Cl-4] (x approximate to 0.77) (1) is also formed as a main product. Light blue crystals of the mixed-valent copper(I,II) chloride (NH4)(5)Cl-5[CuCl2][CuCl4] (2) were obtained as a minor byproduct from a 4:1 reaction mixture. The crystal structures were determined from single crystal X-ray data; (1): tetragonal, I4/mmm, a = 770.9(1), e = 794.2(2) pm, 190 reflections, R-1 = 0.0263; (2): tetragonal, I4/mcm, a = 874.8(1), c = 2329.2(3) pm, 451 reflections, R-1 = 0.0736. In (1) Ni2+ resides in trans-[Ni(NH3)(2)Cl-4](2-) octahedra, and in (2) copper(l) is linearly two-coordinated in ECUC121- and copper(II) resides in a flattened tetrahedron [CuCl4](2-) with a tetrahedricity of 89%. (C) 2001 Elsevier Science.
Resumo:
Interferometry has been used to investigate the spatio-temporal evolution of electron number density following 248 nm laser ablation of a magnesium target. Fringe shifts were measured as a function of laser power density for a circular spot obtained using a random phase plate. Line averaged electron number densities were obtained at delay times up to ∼100 ns after the laser pulse. Density profiles normal to the target surface were recorded for power densities on target in the range 125–300 MW cm−2.
Resumo:
Simultaneous optical absorption and laser-induced fluorescence measurements have been used to map the three-dimensional number densities of ground-state ions and neutrals within a low-temperature KrF laser-produced magnesium plasma expanding into vacuum. Data is reported for the symmetry plane of the plasma, which includes the laser interaction point at a delay of 1 μs after the ∼30 ns KrF laser ablation pulse and for a laser fluence of 2 J cm−2 on target. The number density distributions of ion and neutral species within this plane indicate that two distinct regions exist within the plume; one is a fast component containing ions and neutrals at maximum densities of ∼3×1013 cm−3 and ∼4×1012 cm−3, respectively and the second is a high-density region containing slow neutral species, at densities up to ∼1×1015 cm−3.
Resumo:
Microbial biofilms are ubiquitous in nature and represent the predominant mode of growth of microorganisms. A general characteristic of biofilm communities is that they tend to exhibit significant tolerance to antimicrobial challenge compared with planktonic bacteria of the same species The antibiofilm activity of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids has been evaluated against a panel of clinically significant microbial pathogens, including MRSA. A comparison of antimicrobial activity against planktonic bacteria and established biofilms is presented. In general, these ionic liquids possess potent, broad spectrum antibiofilm activity.
Resumo:
This research characterizes the weathering of natural building stone using an unsteady-state portable probe permeameter. Variations between the permeability properties of fresh rock and the same rocks after the early stages of a salt weathering simulation are used to examine the effects of salt accumulation on spatial variations in surface rock permeability properties in two limestones from Spain. The Fraga and Tudela limestones are from the Ebro basin and are of Miocene age. Both stone types figure largely in the architectural heritage of Spain and, in common with many other building limestones, they are prone to physical damage from salt crystallization in pore spaces. To examine feedbacks associated with salt accumulation during the early stages of this weathering process, samples of the two stone types were subjected to simulated salt weathering under laboratory conditions using magnesium sulphate and sodium chloride at concentrations of 5% and 15%. Permeability mapping and statistical analysis (aspatial statistics and spatial prediction) before and after salt accumulation are used to assess changes in the spatial variability of permeability and to correlate these changes with salt movement, porosity change, potential rock deterioration and textural characteristics. Statistical analyses of small-scale permeability measurements are used to evaluate the drivers for decay and hence aid the prediction of the weathering behaviour of the two limestones.
Resumo:
The development of a reflective, gold-coated long-period grating-based sensor for the measurement of chloride ions in solution is discussed. The sensor scheme is based around a long-period fiber grating (LPG)-based Michelson interferometer where the sensor was calibrated and evaluated in the laboratory using sodium chloride solutions, over a wide range of concentrations, from 0.01 to 4.00 M. The grating response creates shifts in the spectral characteristic of the interferometer, formed using the LPG and a reflective surface on the distal end of the fiber, due to the change of refracting index of the solution surrounding it. It was found that the sensitivity of the device could be enhanced over that obtained from a bare fiber by coating the LPG-based interferometer with gold nanoparticles and the results of a cross-comparison of performance were obtained and details discussed. The approach will be explored as a basis to create a portable, low-power device, developed with the potential for installation in concrete structures to determine the ingress of chloride ions, operating through monitoring the refractive index change.
Resumo:
We have carried out an optical Thomson scatter study of a KrF laser-ablated Mg plume. The evolution of the electron temperature and density at distances 2-5 mm from the target surface has been studied. We have observed that the electron density falls more rapidly than the atomic density and believe that this is a result of rapid dielectronic recombination. A comparison of the electron density profile and evolution with simple hydrodynamic modeling indicates that there is a strong absorption of the laser in the plasma vapor above the target, probably due to photoionization. We also conclude that an isothermal model of expansion better fits the data than an isentropic expansion model. Finally, we compared data obtained from Thomson scatter with those obtained by emission spectroscopy under similar conditions. The two sets of data have differences but are broadly consistent.
Resumo:
A novel UV dosimeter is described comprising a tetrazolium dye, neotetrazolium chloride (NTC), dissolved in a film of polymer, polyvinyl alcohol (PVA). The dosimeter is pale yellow/colourless in the absence of UV light, and turns red upon exposure to UV light. The spectral characteristics of a typical UV dosimeter film and the mechanism through which the colour change occurs are detailed. The NTC UV dosimeter films exhibit a response to UV light that is related to the intensity and duration of UV exposure, the level of dye present in the films and the thickness of the films themselves. The response of the dosimeter is temperature independent over the range 20-40 degrees C and, like most UV dosimeters, exhibits a cosine-like response dependence upon irradiance angle. The introduction of a layer of a UV-screening compound which slows the rate at which the dosimeter responds to UVR enables the dosimeter response to be tailored to different UV doses. The possible use of these novel dosimeters to measure solar UV exposure dose is discussed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Thin (50-500 nm) films of TiO2 may be deposited on glass substrates by the atmospheric pressure chemical vapor deposition (APCVD) reaction of TiCl4 with ethyl acetate at 400600 C. The TiO2 films are exclusively in the form of anatase, as established by Raman microscopy and glancing angle X-ray diffraction. X-ray photoelectron spectroscopy gave a 1:2 Ti:O ratio with Ti 2P(3/2) at 458.6 eV and O 1s is at 530.6 eV. The water droplet contact angle drops from 60degrees to
Resumo:
C-60 is more effective than graphite or diamond as a redox catalyst for the oxidation of chloride to chlorine by cerie ions.