963 resultados para low threshold pumping
Resumo:
An array of monopole elements with reduced element spacing of λ/6 to λ/20 is considered for application in digital beam-forming and direction-finding. The small element spacing introduces strong mutual coupling between the array elements. This paper discusses that decoupling can be achieved analytically for arrays with three elements and describes Kuroda’s identities to realize the lumped elements of the derived decoupling network. Design procedures and equations are proposed. Experimental results are presented. The decoupled array has a bandwidth of 1% and a superdirective radiation pattern.
Resumo:
The objective quantification of three-dimensional kinematics during different functional and occupational tasks is now more in demand than ever. The introduction of new generation of low-cost passive motion capture systems from a number of manufacturers has made this technology accessible for teaching, clinical practice and in small/medium industry. Despite the attractive nature of these systems, their accuracy remains unproved in independent tests. We assessed static linear accuracy, dynamic linear accuracy and compared gait kinematics from a Vicon MX20 system to a Natural Point OptiTrack system. In all experiments data were sampled simultaneously. We identified both systems perform excellently in linear accuracy tests with absolute errors not exceeding 1%. In gait data there was again strong agreement between the two systems in sagittal and coronal plane kinematics. Transverse plane kinematics differed by up to 3 at the knee and hip, which we attributed to the impact of soft tissue artifact accelerations on the data. We suggest that low-cost systems are comparably accurate to their high-end competitors and offer a platform with accuracy acceptable in research for laboratories with a limited budget.
Resumo:
In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.
Resumo:
To compare measurements of retinal thickness (RT) and choroidal thickness (ChT) obtained with an optical low coherence reflectometry (OLCR) biometer (Lenstar LS 900) with those obtained with a spectral domain optical coherence tomographer (SD OCT) (Copernicus SOCT HR) in young normal subjects.
Resumo:
This final report outlines the research conducted by the Centre for Accident Research and Road Safety – Queensland (CARRS-Q) for the research project (title above). This report provides an outline of the project methodology, literature review, three stages of research results (including the focus group discussions, review of organisational records, documentation and initiatives, and analysis of previous CARRS-Q occupational road safety self-report surveys), and recommendations for intervention strategy and initiatives development and implementation.
Resumo:
This paper proposes a novel approach to video deblocking which performs perceptually adaptive bilateral filtering by considering color, intensity, and motion features in a holistic manner. The method is based on bilateral filter which is an effective smoothing filter that preserves edges. The bilateral filter parameters are adaptive and avoid over-blurring of texture regions and at the same time eliminate blocking artefacts in the smooth region and areas of slow motion content. This is achieved by using a saliency map to control the strength of the filter for each individual point in the image based on its perceptual importance. The experimental results demonstrate that the proposed algorithm is effective in deblocking highly compressed video sequences and to avoid over-blurring of edges and textures in salient regions of image.
Resumo:
A novel concept of producing high dc voltage for pulsed-power applications is proposed in this paper. The topology consists of an LC resonant circuit supplied through a tuned alternating waveform that is produced by an inverter. The control scheme is based on the detection of variations in the resonant frequency and adjustment of the switching signal patterns for the inverter to produce a square waveform with exactly the same frequencies. Therefore the capacitor voltage oscillates divergently with an increasing amplitude. A simple one-stage capacitor-diode voltage multiplier (CDVM) connected to the resonant capacitor then rectifies the alternating voltage and gives a dc level equal to twice the input voltage amplitude. The produced high voltage appears then in the form of high-voltage pulses across the load. A basic model is simulated by Simulink platform of MATLAB and the results are included in the paper.
Resumo:
In this video, the words of a translated poem fade in and out above an abstract, moving horizon line. The animated words are set to an emotive stock music track. This work examines processes of signification. It emphasizes abstraction and disconnection as fundamental and generative operations in making meaning. Extending on post-structural and deconstructionist ideas, this work questions the signifying processes of translation and metaphor. By emphasizing the abstract qualities of a translated love poem, it questions the sites and mechanisms of signification.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.
Resumo:
Voltage drop and rise at network peak and off–peak periods along with voltage unbalance are the major power quality problems in low voltage distribution networks. Usually, the utilities try to use adjusting the transformer tap changers as a solution for the voltage drop. They also try to distribute the loads equally as a solution for network voltage unbalance problem. On the other hand, the ever increasing energy demand, along with the necessity of cost reduction and higher reliability requirements, are driving the modern power systems towards Distributed Generation (DG) units. This can be in the form of small rooftop photovoltaic cells (PV), Plug–in Electric Vehicles (PEVs) or Micro Grids (MGs). Rooftop PVs, typically with power levels ranging from 1–5 kW installed by the householders are gaining popularity due to their financial benefits for the householders. Also PEVs will be soon emerged in residential distribution networks which behave as a huge residential load when they are being charged while in their later generation, they are also expected to support the network as small DG units which transfer the energy stored in their battery into grid. Furthermore, the MG which is a cluster of loads and several DG units such as diesel generators, PVs, fuel cells and batteries are recently introduced to distribution networks. The voltage unbalance in the network can be increased due to the uncertainties in the random connection point of the PVs and PEVs to the network, their nominal capacity and time of operation. Therefore, it is of high interest to investigate the voltage unbalance in these networks as the result of MGs, PVs and PEVs integration to low voltage networks. In addition, the network might experience non–standard voltage drop due to high penetration of PEVs, being charged at night periods, or non–standard voltage rise due to high penetration of PVs and PEVs generating electricity back into the grid in the network off–peak periods. In this thesis, a voltage unbalance sensitivity analysis and stochastic evaluation is carried out for PVs installed by the householders versus their installation point, their nominal capacity and penetration level as different uncertainties. A similar analysis is carried out for PEVs penetration in the network working in two different modes: Grid to vehicle and Vehicle to grid. Furthermore, the conventional methods are discussed for improving the voltage unbalance within these networks. This is later continued by proposing new and efficient improvement methods for voltage profile improvement at network peak and off–peak periods and voltage unbalance reduction. In addition, voltage unbalance reduction is investigated for MGs and new improvement methods are proposed and applied for the MG test bed, planned to be established at Queensland University of Technology (QUT). MATLAB and PSCAD/EMTDC simulation softwares are used for verification of the analyses and the proposals.
Resumo:
In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.
Resumo:
The objective of this chapter is to provide rail practitioners with a practical approach for determining safety requirements of low-cost level crossing warning devices (LCLCWDs) on an Australian railway by way of a case study. LCLCWDs, in theory, allow railway operators to improve the safety of passively controlled crossing by upgrading a larger number of level crossings with the same budget that would otherwise be used to upgrade these using the conventional active level crossing control technologies, e.g. track circuit initiated flashing light systems. The chapter discusses the experience and obstacles of adopting LCLCWDs in Australia, and demonstrates how the risk-based approach may be used to make the case for LCLCWDs.
Resumo:
The world is facing problems due to the effects of increased atmospheric pollution, climate change and global warming. Innovative technologies to identify, quantify and assess fluxes exchange of the pollutant gases between the Earth’s surface and atmosphere are required. This paper proposes the development of a gas sensor system for a small UAV to monitor pollutant gases, collect data and geo-locate where the sample was taken. The prototype has two principal systems: a light portable gas sensor and an optional electric–solar powered UAV. The prototype will be suitable to: operate in the lower troposphere (100-500m); collect samples; stamp time and geo-locate each sample. One of the limitations of a small UAV is the limited power available therefore a small and low power consumption payload is designed and built for this research. The specific gases targeted in this research are NO2, mostly produce by traffic, and NH3 from farming, with concentrations above 0.05 ppm and 35 ppm respectively which are harmful to human health. The developed prototype will be a useful tool for scientists to analyse the behaviour and tendencies of pollutant gases producing more realistic models of them.