969 resultados para kinetic constants
Resumo:
Compared with the traditional composites, the incorporation of carbon nanotubes into polymeric matrices can generate materials with superior properties, especially thermal, electrical and tribological properties. The aim of this study was to study the polyamide 6.6/carbon nanotubes (PA 6.6/CNT) nanostructured composites crystallization kinetics. The solution mixing technique was used to obtain the nanostructured composites studied in this work. PA 6.6 films were produced with amounts of 0.1, 0.5, and 1.0 wt% (weight/weight) CNT. X-ray diffraction analyses were performed in order to determine the crystallographic properties of nanostructured composite. The nanostructured composites crystallization kinetic study was performed using the differential scanning calorimetry under isothermal and nonisothermal (dynamic) conditions. The results have shown addition of CNTs in the PA 6.6 reduces the Avrami exponent, affecting the crystallization process of the composite. © The Author(s) 2012.
Resumo:
The propulsion of most of the operating satellites comprises monopropellant (hydrazine - N2H4) or bipropellant (monometilydrazine - MMH and nitrogen tetroxide) chemical systems. When some sample of the propellant tested fails, the entire sample lot shall be rejected, and this action has turned into a health problem due to the high toxicity of N2H 4. Thus, it is interesting to know hydrazine thermal behavior in several storage conditions. The kinetic parameters for thermal decomposition of hydrazine in oxygen and nitrogen atmospheres were determined by Capela-Ribeiro nonlinear isoconversional method. From TG data at heating rates of 5, 10, and 20 C min-1, kinetic parameters could be determined in nitrogen (E = 47.3 ± 3.1 kJ mol-1, lnA = 14.2 ± 0.9 and T b = 69 C) and oxygen (E = 64.9 ± 8.6 kJ mol-1, lnA = 20.7 ± 3.1 and T b = 75 C) atmospheres. It was not possible to identify a specific kinetic model for hydrazine thermal decomposition due to high heterogeneity in reaction; however, experimental f(α)g(α) master-plot curves were closed to F 1/3 model. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Evidence is provided for the inner-sphere mechanism with actual metal coordination of the racemic amine in the crucial hydrogen transfer step promoted by Shvo's catalyst of the chemoenzymatic dynamic kinetic resolution (DKR) of amines. Key intermediates involved in this H-transfer step were intercepted and continuously monitored by electrospray ionization mass spectrometry (ESI-MS) and characterized by their dissociation chemistries via ESI-MS/MS. © 2013 The Royal Society of Chemistry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work investigated the effects of temperature and of rate of heating on the kinetic parameters of pyrolysis of castor beans presscake, a byproduct generated in the biodiesel production process. Pyrolysis process was investigated by thermogravimetric analysis, and parameters were obtained from nonisothermal experiments. The results obtained from the process of thermal decomposition indicated the elimination of humidity and the decomposition of organic components of the biomass. DTG curves showed that the heating rate affects the temperature of maximum decomposition of the material. Kinetic parameters such as activation energy and pre-exponential factor were obtained by model-free methods proposed by Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Kissinger. Experimental results showed that the kinetic parameters values of the FWO and KAS methods display good agreement and can be used to understand the mechanism of degradation of the cake. In a generalized way, the results contribute to better understanding of the processes of biomass pyrolysis.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Laccases (benzendiol:oxygen oxidoreductases; EC 1.10.3.2) catalyze the oxidation of a broad range of substrates, such as polyphenols, dyes and pollutants, and thus these enzymes are widely applied in industrial, biotechnological and environmental fields. In order to improve their biotechnological applications, a deep knowledge of structural factors involved in controlling their activity, in various experimental conditions and on different substrates, is required. In the present study, a laccase from the mushroom Rigidoporus lignosus was kinetically characterized. In particular, the stability, the effects of pH, ionic strength and fluoride ion concentration on the kinetic parameters were investigated, using three di-hydroxy-benzene isomers (1,2-dihydroxy-benzene, 1,3-dihydroxy-benzene and 1,4-dihydroxy-benzene) as substrates. The catalytic constant values of the laccase showed a bell-shaped pH profile, with the same optimum pH and pK(a) values for all tested substrates. This behavior appears to be due to the presence of an ionizable residue in the enzyme active site. To identify this residue, the enzyme was derivatized with diethylpyrocarbonate to modify accessible histidine residues, which, according to structural data, are present in the active site of this enzyme. The kinetic behavior of the derivatized laccase was compared with that of the native enzyme and the derivatized residues were identified by mass spectrometry. Mass spectrometry and kinetic results suggest the main role of His-457 in the control of the catalytic activity of laccase from R. lignosus. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents electrochemical experiments on natural pyrite that combine potentiostatic and voltammetric techniques. X-ray microanalysis is used as an auxiliary technique. The layer growth on pyrite surface is conducted in a wide range of pH and potential range: 3.4 <= pH <= 5.9 with E = 0.80 V (versus SHE), and 0.80 V <= E <= 1.00 V with pH 4.5 (versus SHE) in acetic acid-acetate buffer. This work is unique for two reasons: (1) phenomenological model about layer growth is applied and mathematical-physic consistence is verified and (2) Meyer's hypotheses of chemical mechanism are used to explain kinetic parameters of the phenomenological model. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND/OBJECTIVES: Angelica keiskei is a green leafy vegetable rich in plant pigment phytochemicals such as flavonoids and carotenoids. This study examined bioavailability of flavonoids and carotenoids in Angelica keiskei and the alteration of the antioxidant performance in vivo.SUBJECTS AND MATERIALS: Absorption kinetics of phytochemicals in Angelica keiskei were determined in healthy older adults (>60 y, n = 5) and subjects with metabolic syndrome (n = 5). Subjects consumed 5 g dry Angelica keiskei powder encapsulated in gelatin capsules with a low flavonoid and carotenoid liquid meal. Plasma samples were collected at baseline, 0.5, 1, 2, 3, 4, 5, 6, 7, and 8 h. Samples were analyzed for flavonoids and carotenoids using HPLC systems with electrochemical and UV detection, respectively, and for total antioxidant performance by fluorometry.RESULTS: After ingestion of Angelica keiskei increases in plasma quercetin concentrations were observed at 1-3 and 6-8 hr in the healthy group and at all time points in the metabolic syndrome group compared to baseline (P < 0.05). Plasma lutein concentrations were significantly elevated in both the healthy and metabolic syndrome groups at 8 hr (P < 0.05). Significant increases in total antioxidant performance were also observed in both the healthy and the metabolic syndrome groups compared to baseline (P < 0.05).CONCLUSIONS: Findings of this study clearly demonstrate the bioavailability of phytonutrients of Angelica keiskei and their ability to increase antioxidant status in humans.