909 resultados para indigenous knowledge systems


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nach einer kurzen Begriffsfassung von Smart Cities gehen wir basierend auf den folgenden Beiträgen dieses Heftes auf verschiedene Eigenschaften einer solchen smarten Stadt ein. Dadurch versuchen wir den Ist-Zustand dieser Städte zu dokumentieren. Damit die jeweiligen Stakeholder (strategische) Entscheide treffen können, widmen wir danach ein Kapitel den Chancen und Risiken von Smart Cities. Anhand einer Studie des Europäischen Parlaments zeigen wir nachfolgend entsprechende Bestrebungen aus Europa auf. Anschliessend präsentieren wir eine Best-Practice-Roadmap für die Realisierung von Smart Cities. Zum Schluss zeichnen wir auf einer konnektivistischen Lern- und Kognitionstheorie aufbauend einen Weg zur Cognitive City der Zukunft. Dabei wird der Mensch nicht als isoliertes, sondern als vernetztes Individuum gesehen. Dies begünstigt die Weiterentwicklung von Smart Cities zu Städten, welche aktiv und selbstständig lernen und dadurch automatisch auf Veränderungen ihrer Umwelt reagieren können.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, we develop an adaptive framework for Monte Carlo rendering, and more specifically for Monte Carlo Path Tracing (MCPT) and its derivatives. MCPT is attractive because it can handle a wide variety of light transport effects, such as depth of field, motion blur, indirect illumination, participating media, and others, in an elegant and unified framework. However, MCPT is a sampling-based approach, and is only guaranteed to converge in the limit, as the sampling rate grows to infinity. At finite sampling rates, MCPT renderings are often plagued by noise artifacts that can be visually distracting. The adaptive framework developed in this thesis leverages two core strategies to address noise artifacts in renderings: adaptive sampling and adaptive reconstruction. Adaptive sampling consists in increasing the sampling rate on a per pixel basis, to ensure that each pixel value is below a predefined error threshold. Adaptive reconstruction leverages the available samples on a per pixel basis, in an attempt to have an optimal trade-off between minimizing the residual noise artifacts and preserving the edges in the image. In our framework, we greedily minimize the relative Mean Squared Error (rMSE) of the rendering by iterating over sampling and reconstruction steps. Given an initial set of samples, the reconstruction step aims at producing the rendering with the lowest rMSE on a per pixel basis, and the next sampling step then further reduces the rMSE by distributing additional samples according to the magnitude of the residual rMSE of the reconstruction. This iterative approach tightly couples the adaptive sampling and adaptive reconstruction strategies, by ensuring that we only sample densely regions of the image where adaptive reconstruction cannot properly resolve the noise. In a first implementation of our framework, we demonstrate the usefulness of our greedy error minimization using a simple reconstruction scheme leveraging a filterbank of isotropic Gaussian filters. In a second implementation, we integrate a powerful edge aware filter that can adapt to the anisotropy of the image. Finally, in a third implementation, we leverage auxiliary feature buffers that encode scene information (such as surface normals, position, or texture), to improve the robustness of the reconstruction in the presence of strong noise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As our input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We include a novel approach to resample the input into regularly sampled 3D light fields by aligning them in the spatio-temporal domain, and a technique for high-quality disparity estimation from light fields. We show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel stereo-to-multiview video conversion method for glasses-free multiview displays. Different from previous stereo-to-multiview approaches, our mapping algorithm utilizes the limited depth range of autostereoscopic displays optimally and strives to preserve the scene's artistic composition and perceived depth even under strong depth compression. We first present an investigation of how perceived image quality relates to spatial frequency and disparity. The outcome of this study is utilized in a two-step mapping algorithm, where we (i) compress the scene depth using a non-linear global function to the depth range of an autostereoscopic display and (ii) enhance the depth gradients of salient objects to restore the perceived depth and salient scene structure. Finally, an adapted image domain warping algorithm is proposed to generate the multiview output, which enables overall disparity range extension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a technique for interactive rendering of diffraction effects produced by biological nanostructures, such as snake skin surface gratings. Our approach uses imagery from atomic force microscopy that accurately captures the geometry of the nanostructures responsible for structural colouration, that is, colouration due to wave interference, in a variety of animals. We develop a rendering technique that constructs bidirectional reflection distribution functions (BRDFs) directly from the measured data and leverages pre-computation to achieve interactive performance. We demonstrate results of our approach using various shapes of the surface grating nanostructures. Finally, we evaluate the accuracy of our pre-computation-based technique and compare to a reference BRDF construction technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Image denoising continues to be an active research topic. Although state-of-the-art denoising methods are numerically impressive and approch theoretical limits, they suffer from visible artifacts.While they produce acceptable results for natural images, human eyes are less forgiving when viewing synthetic images. At the same time, current methods are becoming more complex, making analysis, and implementation difficult. We propose image denoising as a simple physical process, which progressively reduces noise by deterministic annealing. The results of our implementation are numerically and visually excellent. We further demonstrate that our method is particularly suited for synthetic images. Finally, we offer a new perspective on image denoising using robust estimators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cloud Computing has evolved to become an enabler for delivering access to large scale distributed applications running on managed network-connected computing systems. This makes possible hosting Distributed Enterprise Information Systems (dEISs) in cloud environments, while enforcing strict performance and quality of service requirements, defined using Service Level Agreements (SLAs). {SLAs} define the performance boundaries of distributed applications, and are enforced by a cloud management system (CMS) dynamically allocating the available computing resources to the cloud services. We present two novel VM-scaling algorithms focused on dEIS systems, which optimally detect most appropriate scaling conditions using performance-models of distributed applications derived from constant-workload benchmarks, together with SLA-specified performance constraints. We simulate the VM-scaling algorithms in a cloud simulator and compare against trace-based performance models of dEISs. We compare a total of three SLA-based VM-scaling algorithms (one using prediction mechanisms) based on a real-world application scenario involving a large variable number of users. Our results show that it is beneficial to use autoregressive predictive SLA-driven scaling algorithms in cloud management systems for guaranteeing performance invariants of distributed cloud applications, as opposed to using only reactive SLA-based VM-scaling algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a version of operational set theory, OST−, without a choice operation, which has a machinery for Δ0Δ0 separation based on truth functions and the separation operator, and a new kind of applicative set theory, so-called weak explicit set theory WEST, based on Gödel operations. We show that both the theories and Kripke–Platek set theory KPKP with infinity are pairwise Π1Π1 equivalent. We also show analogous assertions for subtheories with ∈-induction restricted in various ways and for supertheories extended by powerset, beta, limit and Mahlo operations. Whereas the upper bound is given by a refinement of inductive definition in KPKP, the lower bound is by a combination, in a specific way, of realisability, (intuitionistic) forcing and negative interpretations. Thus, despite interpretability between classical theories, we make “a detour via intuitionistic theories”. The combined interpretation, seen as a model construction in the sense of Visser's miniature model theory, is a new way of construction for classical theories and could be said the third kind of model construction ever used which is non-trivial on the logical connective level, after generic extension à la Cohen and Krivine's classical realisability model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we describe dynamic unicast to increase communication efficiency in opportunistic Information-centric networks. The approach is based on broadcast requests to quickly find content and dynamically creating unicast links to content sources without the need of neighbor discovery. The links are kept temporarily as long as they deliver content and are quickly removed otherwise. Evaluations in mobile networks show that this approach maintains ICN flexibility to support seamless mobile communication and achieves up to 56.6% shorter transmission times compared to broadcast in case of multiple concurrent requesters. Apart from that, dynamic unicast unburdens listener nodes from processing unwanted content resulting in lower processing overhead and power consumption at these nodes. The approach can be easily included into existing ICN architectures using only available data structures.