990 resultados para image sensor
Resumo:
Acoustic recordings of the environment provide an effective means to monitor bird species diversity. To facilitate exploration of acoustic recordings, we describe a content-based birdcall retrieval algorithm. A query birdcall is a region of spectrogram bounded by frequency and time. Retrieval depends on a similarity measure derived from the orientation and distribution of spectral ridges. The spectral ridge detection method caters for a broad range of birdcall structures. In this paper, we extend previous work by incorporating a spectrogram scaling step in order to improve the detection of spectral ridges. Compared to an existing approach based on MFCC features, our feature representation achieves better retrieval performance for multiple bird species in noisy recordings.
Resumo:
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Resumo:
This paper presents the fabrication and study of a Schottky diode based on Pt/WO3 nanoplatelet/SiC for H2 gas sensing applications. The nanostructured WO3 films were synthesized from tungsten (sputtered on SiC) via an acidetching method using a 1.5 M HNO3 solution. Scanning electron microscopy of the developed films revealed platelet crystals with thicknesses in the order of 20-60 nm and lengths between 100-700 nm. The current-voltage characteristic and dynamic response of the diodes were measured in the presence of air and 1% H2 gas balanced in air from 25 to 300°C. Upon exposure to 1% H2, voltage shifts of 0.64, 0.93 and 1.14 V were recorded at temperatures of 120, 200 and 300°C, respectively at a constant forward bias current of 500 μA.
Resumo:
The inverse temperature hyperparameter of the hidden Potts model governs the strength of spatial cohesion and therefore has a substantial influence over the resulting model fit. The difficulty arises from the dependence of an intractable normalising constant on the value of the inverse temperature, thus there is no closed form solution for sampling from the distribution directly. We review three computational approaches for addressing this issue, namely pseudolikelihood, path sampling, and the approximate exchange algorithm. We compare the accuracy and scalability of these methods using a simulation study.
Resumo:
Photographic and image-based dietary records have limited evidence evaluating their performance and use among adults with a chronic disease. This study evaluated the performance of a mobile phone image-based dietary record, the Nutricam Dietary Assessment Method (NuDAM), in adults with type 2 diabetes mellitus (T2DM). Criterion validity was determined by comparing energy intake (EI) with total energy expenditure (TEE) measured by the doubly-labelled water technique. Relative validity was established by comparison to a weighed food record (WFR). Inter-rater reliability was assessed by comparing estimates of intake from three dietitians. Ten adults (6 males, age=61.2±6.9 years, BMI=31.0±4.5 kg/m2) participated. Compared to TEE, mean EI was under-reported using both methods, with a mean ratio of EI:TEE 0.76±0.20 for the NuDAM and 0.76±0.17 for the WFR. There was moderate to high correlations between the NuDAM and WFR for energy (r=0.57), carbohydrate (r=0.63, p<0.05), protein (r=0.78, p<0.01) and alcohol (rs=0.85, p<0.01), with a weaker relationship for fat (r=0.24). Agreement between dietitians for nutrient intake for the 3-day NuDAM (ICC = 0.77-0.99) was marginally lower when compared with the 3-day WFR (ICC=0.82-0.99). All subjects preferred using the NuDAM and were willing to use it again for longer recording periods.
Resumo:
Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training.
Resumo:
We address the problem of the rangefinder-based avoidance of unforeseen static obstacles during a visual navigation task. We extend previous strategies which are efficient in most cases but remain still hampered by some drawbacks (e.g., risks of collisions or of local minima in some particular cases, etc.). The key idea is to complete the control strategy by adding a controller providing the robot some anticipative skills to guarantee non collision and by defining more general transition conditions to deal with local minima. Simulation results show the proposed strategy efficiency.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.
Resumo:
This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.
Resumo:
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.
Resumo:
The impact of disease and treatment on a young adult's self-image and sexuality has been largely overlooked. This is surprising given that establishing social and romantic relationships is a normal occurrence in young adulthood. This article describes three female patients' cancer journeys and demonstrates how their experiences have impacted their psychosocial function and self-regard. The themes of body image, self-esteem, and identity formation are explored, in relation to implications for relationship-building and moving beyond a cancer diagnosis. This article has been written by young cancer survivors, Danielle Tindle, Kelly Denver, and Faye Lilley, in an effort to elucidate the ongoing struggle to reconcile cancer into a normal young adult's life.
Resumo:
Frog species have been declining worldwide at unprecedented rates in the past decades. There are many reasons for this decline including pollution, habitat loss, and invasive species [1]. To preserve, protect, and restore frog biodiversity, it is important to monitor and assess frog species. In this paper, a novel method using image processing techniques for analyzing Australian frog vocalisations is proposed. An FFT is applied to audio data to produce a spectrogram. Then, acoustic events are detected and isolated into corresponding segments through image processing techniques applied to the spectrogram. For each segment, spectral peak tracks are extracted with selected seeds and a region growing technique is utilised to obtain the contour of each frog vocalisation. Based on spectral peak tracks and the contour of each frog vocalisation, six feature sets are extracted. Principal component analysis reduces each feature set down to six principal components which are tested for classification performance with a k-nearest neighbor classifier. This experiment tests the proposed method of classification on fourteen frog species which are geographically well distributed throughout Queensland, Australia. The experimental results show that the best average classification accuracy for the fourteen frog species can be up to 87%.
Resumo:
This paper presents a system to analyze long field recordings with low signal-to-noise ratio (SNR) for bio-acoustic monitoring. A method based on spectral peak track, Shannon entropy, harmonic structure and oscillation structure is proposed to automatically detect anuran (frog) calling activity. Gaussian mixture model (GMM) is introduced for modelling those features. Four anuran species widespread in Queensland, Australia, are selected to evaluate the proposed system. A visualization method based on extracted indices is employed for detection of anuran calling activity which achieves high accuracy.
Resumo:
Acoustic classification of anurans (frogs) has received increasing attention for its promising application in biological and environment studies. In this study, a novel feature extraction method for frog call classification is presented based on the analysis of spectrograms. The frog calls are first automatically segmented into syllables. Then, spectral peak tracks are extracted to separate desired signal (frog calls) from background noise. The spectral peak tracks are used to extract various syllable features, including: syllable duration, dominant frequency, oscillation rate, frequency modulation, and energy modulation. Finally, a k-nearest neighbor classifier is used for classifying frog calls based on the results of principal component analysis. The experiment results show that syllable features can achieve an average classification accuracy of 90.5% which outperforms Mel-frequency cepstral coefficients features (79.0%).
Resumo:
A scheme for integration of stand-alone INS and GPS sensors is presented, with data interchange over an external bus. This ensures modularity and sensor interchangeability. Use of a medium-coupled scheme reduces data flow and computation, facilitating use in surface vehicles. Results show that the hybrid navigation system is capable of delivering high positioning accuracy.