989 resultados para gamma glutamyltransferase
Resumo:
The use of radiation-inducible promoters to drive transgene expression offers the possibility of temporal and spatial regulation of gene activation. This study assessed the potential of one such promoter element, p21(WAF1/CIP1) (WAF1), to drive expression of the noradrenaline transporter (NAT) gene, which conveys sensitivity to radioiodinated meta-iodobenzylguanidine (MIBG). An expression vector containing NAT under the control of the radiation-inducible WAF1 promoter (pWAF/NAT) was produced. The non-NAT expressing cell lines UVW (glioma) and HCT116 (colorectal cancer) were transfected with this construct to assess radiation-controlled WAF1 activation of the NAT gene. Transfection of UVW and HCT cells with pWAF/NAT conferred upon them the ability to accumulate [(131)I]MIBG, which led to increased sensitivity to the radiopharmaceutical. Pretreatment of transfected cells with ? radiation or the radiopharmaceuticals [(123)I]MIBG or [(131)I]MIBG induced dose- and time-dependent increases in subsequent [(131)I]MIBG uptake and led to enhanced efficacy of [(131)I]MIBG-mediated cell kill. Gene therapy using WAF1-driven expression of NAT has the potential to expand the use of this therapeutic modality to tumors that lack a radio-targetable feature.
Resumo:
We carry out the first multi-dimensional radiative transfer calculations to simultaneously compute synthetic spectra and light curves for models of supernovae driven by fast bipolar outflows. These allow us to make self-consistent predictions for the orientation dependence of both color evolution and spectral features. We compare models with different degrees of asphericity and metallicity and find significant observable consequences of both. In aspherical models, we find spectral and light curve features that vary systematically with observer orientation. In particular, we find that the early-phase light curves are brighter and bluer when viewed close to the polar axis but that the peak flux is highest for equatorial (off-axis) inclinations. Spectral line features also depend systematically on observer orientation, including the velocity of the Si II 6355 Å line. Consequently, our models predict a correlation between line velocity and color that could assist the identification of supernovae associated with off-axis jet-driven explosions. The amplitude and range of this correlation depends on the degree of asphericity, the metallicity, and the epoch of observation but we find that it is always present and acts in the same direction. © 2012. The American Astronomical Society. All rights reserved..
Resumo:
Catalysts currently employed for the polymerization of ethylene have previously been found to deactivate in the presence of oxygen. It is, therefore, important that oxygen is removed from the ethylene feedstock prior to the polymerization. The Ag/gamma-Al2O3 catalyst exhibits excellent activity and selectivity toward oxygen reduction with hydrogen in the presence of ethylene. TAP vacuum pulse experiments have been utilised to understand the catalytic behaviour of the Ag/gamma-Al2O3 catalyst. TAP multi-pulse experiments have determined the types of active sites that are found on the Ag/gamma-Al2O3 catalyst, and the intrinsic activity of these sites. The lifetime of the reactive adsorbed oxygen intermediate has also been determined through TAP consecutive pulse experiments. Multi-pulse and consecutive pulse data have been combined with ethylene adsorption/desorption rate constants to provide an overview of the Ag/gamma-Al2O3 catalyst system.
Resumo:
A controlled study was undertaken to assess the effect of gamma irradiation on post-traumatic intraocular cellular proliferation. A standard perforating injury in the posterior segment of the rabbit eye was used to induce intraocular cellular proliferation and vitreo-retinal membrane formation. The site of injury was irradiated with an ophthalmic Cobalt60 applicator which provided a continuous source of gamma rays. Non-irradiated eyes developed traction retinal detachments associated with post-traumatic vitreo-retinal membranes. Irradiated eyes developed attenuated membranes or atrophic retinal scars, with the retina remaining attached. The membranes in non-irradiated eyes were highly cellular with abundant collagen, while irradiated membranes had fewer cells within a sparse collagen matrix. The episcleral fibroblasts, on autoradiographic studies appeared to be the main source of the cells that formed the proliferating tissue in both non-irradiated and irradiated eyes. In irradiated eyes both the inflammatory response and division of fibroblasts were delayed and reduced.
Resumo:
This work investigates the end-to-end performance of randomized distributed space-time codes with complex Gaussian distribution, when employed in a wireless relay network. The relaying nodes are assumed to adopt a decode-and-forward strategy and transmissions are affected by small and large scale fading phenomena. Extremely tight, analytical approximations of the end-to-end symbol error probability and of the end-to-end outage probability are derived and successfully validated through Monte-Carlo simulation. For the high signal-to-noise ratio regime, a simple, closed-form expression for the symbol error probability is further provided.
Resumo:
A novel design for a compact gamma-ray spectrometer is presented. The proposed system allows for spectroscopy of high-flux multi-MeV gamma-ray beams with MeV energy resolution in a compact design. In its basic configuration, the spectrometer exploits conversion of gamma-rays into electrons via Compton scattering in a low-Z material. The scattered electron population is then spectrally resolved using a magnetic spectrometer. The detector is shown to be effective for gamma-ray energies between 3 and 20 MeV. The main properties of the spectrometer are confirmed by Monte Carlo simulations.
Resumo:
Analysis of gamma-H2AX foci in blood lymphocytes is a promising approach for rapid dose estimation to support patient triage after a radiation accident but has one major drawback: the rapid decline of foci levels post-exposure cause major uncertainties in situations where the exact timing between exposure and blood sampling is unknown. To address this issue, radiation-induced apoptosis (RIA) in lymphocytes was investigated using fluorogenic inhibitors of caspases (FLICA) as an independent biomarker for radiation exposure, which may complement the gamma-H2AX assay. Ex vivo X-irradiated peripheral blood lymphocytes from 17 volunteers showed dose-and time-dependent increases in radiation-induced apoptosis over the first 3 days after exposure, albeit with considerable interindividual variation. Comparison with gamma-H2AX and 53BP1 foci counts suggested an inverse correlation between numbers of residual foci and radiation-induced apoptosis in lymphocytes at 24 h postirradiation (P = 0.007). In T-helper (CD4), T-cytotoxic (CD8) and B-cells (CD19), some significant differences in radiation induced DSBs or apoptosis were observed, however no correlation between foci and apoptosis in lymphocyte subsets was observed at 24 h postirradiation. While gamma-H2AX and 53BP1 foci were rapidly induced and then repaired after exposure, radiation-induced apoptosis did not become apparent until 24 h after exposure. Data from six volunteers with different ex vivo doses and post-exposure times were used to test the capability of the combined assay. Results show that simultaneous analysis of gamma-H2AX and radiation-induced apoptosis may provide a rapid and more accurate triage tool in situations where the delay between exposure and blood sampling is unknown compared to gamma-H2AX alone. This combined approach may improve the accuracy of dose estimations in cases where blood sampling is performed days after the radiation exposure.
Resumo:
Spectral gamma ray (SGR) logs are used as stratigraphic tools in correlation, sequence stratigraphy and most recently, in clastic successions as a proxy for changes in hinterland palaeoweathering. In this study we analyse the spectral gamma ray signal recorded in two boreholes that penetrated the carbonate and evaporate-dominated Permian–Triassic boundary (PTB) in the South Pars Gasfield (offshore Iran, Persian Gulf) in an attempt to analyse palaeoenvironmental changes from the upper Permian (Upper Dalan Formation) and lower Triassic (Lower Kangan Formation). The results are compared to lithological changes, total organic carbon (TOC) contents and published stable isotope (δ18O, δ13C) results. This work is the first to consider palaeoclimatic effects on SGR logs from a carbonate/evaporate succession. While Th/U ratios compare well to isotope data (and thus a change to less arid hinterland climates from the Late Permian to the Early Triassic), Th/K ratios do not, suggesting a control not related to hinterland weathering. Furthermore, elevated Th/U ratios in the Early Triassic could reflect a global drawdown in U, rather than a more humid episode in the sediment hinterlands, with coincident changes in TOC. Previous work that used spectral gamma ray data in siliciclastic successions as a palaeoclimate proxy may not apply in carbonate/evaporate sedimentary rocks.
Resumo:
The statistical properties of the multivariate GammaGamma (ΓΓ) distribution with arbitrary correlation have remained unknown. In this paper, we provide analytical expressions for the joint probability density function (PDF), cumulative distribution function (CDF) and moment generation function of the multivariate ΓΓ distribution with arbitrary correlation. Furthermore, we present novel approximating expressions for the PDF and CDF of the su m of ΓΓ random variables with arbitrary correlation. Based on this statistical analysis, we investigate the performance of radio frequency and optical wireless communication systems. It is noteworthy that the presented expressions include several previous results in the literature as special cases.
Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies
Resumo:
We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ≲ z ≲ 1.6, and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates, and metallicities. We find that, as a whole, the hosts of SLSNe are a low-luminosity (〈MB 〉 ≈ -17.3 mag), low stellar mass (〈M〉 ≈ 2 × 108 M⊙) population, with a high median specific star formation rate (〈sSFR〉 ≈ 2 Gyr-1). The median metallicity of our spectroscopic sample is low, 12 + log (O/H) ≈ 8.35 ≈ 0.45 Z⊙, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR, and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly spinning magnetar in SLSNe and an accreting black hole in LGRBs.