730 resultados para fuzzy sample entropy
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
ABSTRACT Given the need to obtain systems to better control broiler production environment, we performed an experiment with broilers from 1 to 21 days, which were submitted to different intensities and air temperature durations in conditioned wind tunnels and the results were used for validation of afuzzy model. The model was developed using as input variables: duration of heat stress (days), dry bulb air temperature (°C) and as output variable: feed intake (g) weight gain (g) and feed conversion (g.g-1). The inference method used was Mamdani, 20 rules have been prepared and the defuzzification technique used was the Center of Gravity. A satisfactory efficiency in determining productive responses is evidenced in the results obtained in the model simulation, when compared with the experimental data, where R2 values calculated for feed intake, weight gain and feed conversion were 0.998, 0.981 and 0.980, respectively.
Resumo:
ABSTRACT This study aimed to compare thematic maps of soybean yield for different sampling grids, using geostatistical methods (semivariance function and kriging). The analysis was performed with soybean yield data in t ha-1 in a commercial area with regular grids with distances between points of 25x25 m, 50x50 m, 75x75 m, 100x100 m, with 549, 188, 66 and 44 sampling points respectively; and data obtained by yield monitors. Optimized sampling schemes were also generated with the algorithm called Simulated Annealing, using maximization of the overall accuracy measure as a criterion for optimization. The results showed that sample size and sample density influenced the description of the spatial distribution of soybean yield. When the sample size was increased, there was an increased efficiency of thematic maps used to describe the spatial variability of soybean yield (higher values of accuracy indices and lower values for the sum of squared estimation error). In addition, more accurate maps were obtained, especially considering the optimized sample configurations with 188 and 549 sample points.
Resumo:
ABSTRACT The Body Mass Index (BMI) can be used by farmers to help determine the time of evaluation of the body mass gain of the animal. However, the calculation of this index does not reveal immediately whether the animal is ready for slaughter or if it needs special care fattening. The aim of this study was to develop a software using the Fuzzy Logic to compare the bovine body mass among themselves and identify the groups for slaughter and those that requires more intensive feeding, using "mass" and "height" variables, and the output Fuzzy BMI. For the development of the software, it was used a fuzzy system with applications in a herd of 147 Nellore cows, located in a city of Santa Rita do Pardo city – Mato Grosso do Sul (MS) state, in Brazil, and a database generated by Matlab software.
Resumo:
In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.
Resumo:
PURPOSE: To establish reference values for the first trimester uterine artery resistance index (UtA-RI) and pulsatility index (UtA-PI) in healthy singleton pregnant women from Northeast Brazil. METHODS: A prospective observational cohort study including 409 consecutive singleton pregnancies undergoing routine early ultrasound screening at 11 - 14 weeks of gestation was performed. The patients responded to a questionnaire to assess maternal epidemiological characteristics. The left and right UtA-PI and UtA-RI were examined by color and pulsed Doppler by transabdominal technique and the mean UtA-PI, mean UtA-RI and the presence of bilateral protodiastolic notching were recorded. Quartile regression was used to estimate reference values. RESULTS: The mean±standard deviation UtA-RI and UtA-PI were 0.7±0.1 and 1.5±0.5, respectively. When segregated for gestation age, mean UtA-PI was 1.6±0.5 at 11 weeks, 1.5±0.6 at 12 weeks, 1.4±0.4 at 13 weeks and 1.3±0.4 at 14 weeks' gestation and mean UtA-RI was 0.7±0.1 at 11 weeks, 0.7±0.1 at 12 weeks, 0.6±0.1 at 13 weeks and 0.6±0.1 at 14 weeks' gestation. Uterine artery bilateral notch was present in 261 (63.8%) patients. We observed that the 5th and 95th percentiles of the UtA-PI and UtA-RI uterine arteries were 0.7 and 2.3 and, 0.5 and 0.8, respectively. CONCLUSION: Normal reference range of uterine artery Doppler in healthy singleton pregnancies from Northeast Brazil was established. The 95th percentile of UtA-PI and UtA-RI values may serve as a cut-off for future prediction of pregnancy complications studies (i.e., pre-eclampsia) in Northeast Brazil.
Resumo:
This study examines the structure of the Russian Reflexive Marker ( ся/-сь) and offers a usage-based model building on Construction Grammar and a probabilistic view of linguistic structure. Traditionally, reflexive verbs are accounted for relative to non-reflexive verbs. These accounts assume that linguistic structures emerge as pairs. Furthermore, these accounts assume directionality where the semantics and structure of a reflexive verb can be derived from the non-reflexive verb. However, this directionality does not necessarily hold diachronically. Additionally, the semantics and the patterns associated with a particular reflexive verb are not always shared with the non-reflexive verb. Thus, a model is proposed that can accommodate the traditional pairs as well as for the possible deviations without postulating different systems. A random sample of 2000 instances marked with the Reflexive Marker was extracted from the Russian National Corpus and the sample used in this study contains 819 unique reflexive verbs. This study moves away from the traditional pair account and introduces the concept of Neighbor Verb. A neighbor verb exists for a reflexive verb if they share the same phonological form excluding the Reflexive Marker. It is claimed here that the Reflexive Marker constitutes a system in Russian and the relation between the reflexive and neighbor verbs constitutes a cross-paradigmatic relation. Furthermore, the relation between the reflexive and the neighbor verb is argued to be of symbolic connectivity rather than directionality. Effectively, the relation holding between particular instantiations can vary. The theoretical basis of the present study builds on this assumption. Several new variables are examined in order to systematically model variability of this symbolic connectivity, specifically the degree and strength of connectivity between items. In usage-based models, the lexicon does not constitute an unstructured list of items. Instead, items are assumed to be interconnected in a network. This interconnectedness is defined as Neighborhood in this study. Additionally, each verb carves its own niche within the Neighborhood and this interconnectedness is modeled through rhyme verbs constituting the degree of connectivity of a particular verb in the lexicon. The second component of the degree of connectivity concerns the status of a particular verb relative to its rhyme verbs. The connectivity within the neighborhood of a particular verb varies and this variability is quantified by using the Levenshtein distance. The second property of the lexical network is the strength of connectivity between items. Frequency of use has been one of the primary variables in functional linguistics used to probe this. In addition, a new variable called Constructional Entropy is introduced in this study building on information theory. It is a quantification of the amount of information carried by a particular reflexive verb in one or more argument constructions. The results of the lexical connectivity indicate that the reflexive verbs have statistically greater neighborhood distances than the neighbor verbs. This distributional property can be used to motivate the traditional observation that the reflexive verbs tend to have idiosyncratic properties. A set of argument constructions, generalizations over usage patterns, are proposed for the reflexive verbs in this study. In addition to the variables associated with the lexical connectivity, a number of variables proposed in the literature are explored and used as predictors in the model. The second part of this study introduces the use of a machine learning algorithm called Random Forests. The performance of the model indicates that it is capable, up to a degree, of disambiguating the proposed argument construction types of the Russian Reflexive Marker. Additionally, a global ranking of the predictors used in the model is offered. Finally, most construction grammars assume that argument construction form a network structure. A new method is proposed that establishes generalization over the argument constructions referred to as Linking Construction. In sum, this study explores the structural properties of the Russian Reflexive Marker and a new model is set forth that can accommodate both the traditional pairs and potential deviations from it in a principled manner.
Resumo:
Työssä käsitellään innovaatioprosessin ensimmäistä ”fuzzy front end” -vaihetta, jota työssä kutsutaan front end -vaiheeksi. Front end -vaihe on innovaatioprosessin alustava tutkimus ja suunnittelu vaihe ennen teknistä kehittämisvaihetta. Front end -vaihetta on tutkittu innovaatioprosessin osista vähiten, sekä se on useimmille yrityksillä sumea ja vaikeasti käsitettävä. Tutkimusten mukaan front end -vaiheen osaaminen on kuitenkin erittäin merkittävä tekijä yrityksen innovatiivisuudelle. Työssä avataan innovaatioprosessin sisältöä ja tavoitteita, sekä vertaillaan käytössä olevia malleja front end -vaiheen rakenteesta. Työssä selvitetään avaintekijöitä front end -vaiheen menestykseen ja tehokkuuteen. Lisäksi käsitellään johtamisen tekijöitä, jotka edesauttavat onnistumaan front end -vaiheessa.
Resumo:
Changes in the electroencephalography (EEG) signal have been used to study the effects of anesthetic agents on the brain function. Several commercial EEG based anesthesia depth monitors have been developed to measure the level of the hypnotic component of anesthesia. Specific anesthetic related changes can be seen in the EEG, but still it remains difficult to determine whether the subject is consciousness or not during anesthesia. EEG reactivity to external stimuli may be seen in unconsciousness subjects, in anesthesia or even in coma. Changes in regional cerebral blood flow, which can be measured with positron emission tomography (PET), can be used as a surrogate for changes in neuronal activity. The aim of this study was to investigate the effects of dexmedetomidine, propofol, sevoflurane and xenon on the EEG and the behavior of two commercial anesthesia depth monitors, Bispectral Index (BIS) and Entropy. Slowly escalating drug concentrations were used with dexmedetomidine, propofol and sevoflurane. EEG reactivity at clinically determined similar level of consciousness was studied and the performance of BIS and Entropy in differentiating consciousness form unconsciousness was evaluated. Changes in brain activity during emergence from dexmedetomidine and propofol induced unconsciousness were studied using PET imaging. Additionally, the effects of normobaric hyperoxia, induced during denitrogenation prior to xenon anesthesia induction, on the EEG were studied. Dexmedetomidine and propofol caused increases in the low frequency, high amplitude (delta 0.5-4 Hz and theta 4.1-8 Hz) EEG activity during stepwise increased drug concentrations from the awake state to unconsciousness. With sevoflurane, an increase in delta activity was also seen, and an increase in alpha- slow beta (8.1-15 Hz) band power was seen in both propofol and sevoflurane. EEG reactivity to a verbal command in the unconsciousness state was best retained with propofol, and almost disappeared with sevoflurane. The ability of BIS and Entropy to differentiate consciousness from unconsciousness was poor. At the emergence from dexmedetomidine and propofol induced unconsciousness, activation was detected in deep brain structures, but not within the cortex. In xenon anesthesia, EEG band powers increased in delta, theta and alpha (8-12Hz) frequencies. In steady state xenon anesthesia, BIS and Entropy indices were low and these monitors seemed to work well in xenon anesthesia. Normobaric hyperoxia alone did not cause changes in the EEG. All of these results are based on studies in healthy volunteers and their application to clinical practice should be considered carefully.
Resumo:
This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.
Resumo:
An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180º out of phase.
Resumo:
Este artigo trata do problema de classificação do risco de infestação por plantas daninhas usando técnicas geoestatísticas, análise de imagens e modelos de classificação fuzzy. Os principais atributos utilizados para descrever a infestação incluem a densidade de sementes, bem como a sua extensão, a cobertura foliar e a agressividade das plantas daninhas em cada região. A densidade de sementes reflete a produção de sementes por unidade de área, e a sua extensão, a influência das sementes vizinhas; a cobertura foliar indica a extensão dos agrupamentos das plantas daninhas emergentes; e a agressividade descreve a porcentagem de ocupação de espécies com alta capacidade de produção de sementes. Os dados da densidade de sementes, da cobertura foliar e da agressividade para as diferentes regiões são obtidos a partir de simulação com modelos matemáticos de populações. Neste artigo propõe-se um sistema de classificação fuzzy utilizando os atributos descritos para inferir os riscos de infestação de regiões da cultura por plantas daninhas. Resultados de simulação são apresentados para ilustrar o uso desse sistema na aplicação localizada de herbicida.
Resumo:
A growing concern for organisations is how they should deal with increasing amounts of collected data. With fierce competition and smaller margins, organisations that are able to fully realize the potential in the data they collect can gain an advantage over the competitors. It is almost impossible to avoid imprecision when processing large amounts of data. Still, many of the available information systems are not capable of handling imprecise data, even though it can offer various advantages. Expert knowledge stored as linguistic expressions is a good example of imprecise but valuable data, i.e. data that is hard to exactly pinpoint to a definitive value. There is an obvious concern among organisations on how this problem should be handled; finding new methods for processing and storing imprecise data are therefore a key issue. Additionally, it is equally important to show that tacit knowledge and imprecise data can be used with success, which encourages organisations to analyse their imprecise data. The objective of the research conducted was therefore to explore how fuzzy ontologies could facilitate the exploitation and mobilisation of tacit knowledge and imprecise data in organisational and operational decision making processes. The thesis introduces both practical and theoretical advances on how fuzzy logic, ontologies (fuzzy ontologies) and OWA operators can be utilized for different decision making problems. It is demonstrated how a fuzzy ontology can model tacit knowledge which was collected from wine connoisseurs. The approach can be generalised and applied also to other practically important problems, such as intrusion detection. Additionally, a fuzzy ontology is applied in a novel consensus model for group decision making. By combining the fuzzy ontology with Semantic Web affiliated techniques novel applications have been designed. These applications show how the mobilisation of knowledge can successfully utilize also imprecise data. An important part of decision making processes is undeniably aggregation, which in combination with a fuzzy ontology provides a promising basis for demonstrating the benefits that one can retrieve from handling imprecise data. The new aggregation operators defined in the thesis often provide new possibilities to handle imprecision and expert opinions. This is demonstrated through both theoretical examples and practical implementations. This thesis shows the benefits of utilizing all the available data one possess, including imprecise data. By combining the concept of fuzzy ontology with the Semantic Web movement, it aspires to show the corporate world and industry the benefits of embracing fuzzy ontologies and imprecision.
Resumo:
The objectives of this study were to evaluate baby corn yield, green corn yield, and grain yield in corn cultivar BM 3061, with weed control achieved via a combination of hoeing and intercropping with gliricidia, and determine how sample size influences weed growth evaluation accuracy. A randomized block design with ten replicates was used. The cultivar was submitted to the following treatments: A = hoeings at 20 and 40 days after corn sowing (DACS), B = hoeing at 20 DACS + gliricidia sowing after hoeing, C = gliricidia sowing together with corn sowing + hoeing at 40 DACS, D = gliricidia sowing together with corn sowing, and E = no hoeing. Gliricidia was sown at a density of 30 viable seeds m-2. After harvesting the mature ears, the area of each plot was divided into eight sampling units measuring 1.2 m² each to evaluate weed growth (above-ground dry biomass). Treatment A provided the highest baby corn, green corn, and grain yields. Treatment B did not differ from treatment A with respect to the yield values for the three products, and was equivalent to treatment C for green corn yield, but was superior to C with regard to baby corn weight and grain yield. Treatments D and E provided similar yields and were inferior to the other treatments. Therefore, treatment B is a promising one. The relation between coefficient of experimental variation (CV) and sample size (S) to evaluate growth of the above-ground part of the weeds was given by the equation CV = 37.57 S-0.15, i.e., CV decreased as S increased. The optimal sample size indicated by this equation was 4.3 m².