995 resultados para electromechanical actuators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the fabrication of an efficient amperometric hydrogen peroxide sensor with favorable properties is presented. Prussian blue (PB) was catalytically synthesized by Pt nanoparticles (Pt-nano) from ferric ferricyanide aqueous solution to form PB@Pt-nano hybrid, and it was confirmed by transmission electron microscope (TEM) and optical spectra. The electrochemical behavior of PB@Pt-nano was highly improved through its integration with poly(diallyldimethylammonium chloride) modified carbon nanotubes (PCNTs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we presented a novel covalent bonding process between two quartz wafers at 300 degrees C. High-quality wafer bonding was formed by the hydroxylization, aminosilylation and atom transfer radical polymerization (ATRP) of glycidyl methacrylate (GMA), respectively, on quartz wafer surfaces, followed by close contact of the GMA functional wafer and the aminosilylation wafer, the epoxy group opening ring reaction was catalyzed by the amino and solidified to form the covalent bonding of the quartz wafers. The shear force between two wafers in all bonding samples was higher than 1.5 MPa. Microfluidic chips bonded by the above procedures had high transparency and the present procedure avoided the adhesive to block or flow into the channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

0-3 connectivity piezoelectric composites lead zirconate titanate(PZT)/polyvinylidene fluoride(PVDF) were prepared. Crystallininity and microstructure of the samples were characterized by SEM, FTIR and WAXD. The results indicated that the PZT powder was blended with non-crystalline phase of PVDF. The composites presented different net-morphology. PVDF existed as g crystalline phase in the composites. The composites presented island type structure with low content of PZT and hard sphere stack in irregular type with high content of PZT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A toluidine blue modified gold electrode was constructed using self-assembled silica gel technique. Firstly, toluidine blue was encapsulated within 3D network of silica self-assembly monolayer on the surface of gold electrode. Secondly, another layer of silica sol was further assembled to protect from leaching of mediator or possible contamination. The electrochemical characteristics of toluidine blue immobilized within self-assembled silica gel were studied in detail. The modified electrode was applied for electrochemical oxidation of NADH with satisfactory results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel flow injection optical fiber biosensor for glucose based on luminol electrochemiluminescence (ECL) is presented. The sol-gel method is introduced to immobilize glucose oxidase (GOD) on the surface of a glassy carbon electrode. After optimization of the working conditions, glucose could be quantitated in the concentration ranges between 50 muM and 10 mM with a detection limit of around 26 muM. Signal reproducibility was about 3.62% relative standard deviation for 11 replicated measurements of 0.1 mM glucose. The ECL biosensor also showed good selectivity and operational stability. The proposed method can be applied to determination of glucose in soft drink samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is reported for the first time that the performance of the electrochemical H2S sensor with the Nation membrane pre-treated with the concentrated H2SO4 as the solid electrolyte is much more stable than that for the sensor with the Nation membrane without H2SO4 pretreatment. The sensitivity of the sensor is about 2.92 muA/ppm. The response time of the sensor is about 9 s. The detection limit is about 0.1 ppm. Therefore, this kind of the electrochemical H2S gas sensor may be desirable for the practical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sol-gel derived ceramic-carbon composite electrode is used for fabrication of a new type of optical fiber biosensor based on luminol electrochemiluminescence (ECL). The electrode consists of graphite powder impregnated with glucose oxidase in a silicate network. In this configuration, the immobilized enzyme oxidizes glucose to liberate hydrogen peroxide and graphite powder provides percolation conductivity for triggering the ECL between luminol and the liberated hydrogen peroxide. Both of the reactions occur simultaneously on the surface of the composite electrode, thereby the response of the biosensor is very fast. The peak intensity was achieved within only 20 s after glucose injection. In addition, the electrode could be renewed by a simple mechanical polishing step in case of contamination or fouling. The linear range extends from 0.01 to 10 mM for glucose and the detection limit is about 8.16 muM. The renewal repeatability and stability of the biosensor are also investigated in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the fabrication method of a new type of carbon monoxide gas sensor based on SnOx with low power consumption and its sensing characteristics have been reported. The electric conductance of this type of sensor evolves oscillation form regularly when the sensor is exposed to low level of CO gas. The oscillation amplitude is directly proportional to the concentration of CO gas over a wide range. The effects of relevant factors. such as. humidity, temperature and interference gases on the sensor properties were examined. The sensing oscillation response mechanism was also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Langmuir-Blodgett (LB) composite films, ferric oxide nanoparticle composite with tris-(2,3-di-t-amylphenoxy)-(8-quinolinolinolyl) copper phthalocyanine (CuPcA(2)), were obtained by capped type and alternated type and characterized by X-ray photoelectron spectroscopy (XPS) and visible spectra. The gas sensitivity of the composite films and the pure ferric oxide and pure CuPcA(2) LB films to ammonia and ethanol were measured at room temperature. The composite films could be used as the C2H5OH sensors in the range of 2-8 or 100-200 ppm. The XPS data suggested that the adduct complex NH3-CuPcA(2) was formed after the capped film was exposed to the detected gas of ammonia. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deposition of Langmuir-Blodgett film of neodymium bisphthalocyanine derivatives is reported for the first time. Optical absorption data reveal that these films call be deposited in a reproducible manner; results are also presented showing the extreme sensitivity and selectivity of their electrical conductivity to NH3 in room temperature. The Nd bisphthalocyanine LB film is a sensitive, reproducible. rapid and stable gas sensor. Neodymium bisphthalocyanine derivatives will be candidates for thin film gas-sensitive materials. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new immobilization material and an immobilization method for a glucose sensor with HEFc (hydroxyethylferrocene) as mediator is described. In the course of three months, the enzyme electrode shows almost no deterioration in its response characteristics. The response time is less than 30 s. The electrode has a wide linear range up to 10 mmol l(-1) with good repeatability. The kinetic parameters have also been calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new type of solid-state galvanic cell for detecting a small amount of hydrogen in air at room temperature is proposed. The sensor cell is a potentiometric cell using Ce0.95Ca0.05F2.95 as solid-state electrolyte. The cell exhibits good sensing properties to hydrogen in air at room temperature.