960 resultados para collective memory work
Resumo:
Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges.
Resumo:
O presente trabalho busca uma ruptura com a estrutura tradicional, calcada nos conteúdos programáticos, através de uma prática desenvolvida com alunos do ensino fundamental e médio. Assim tornando viável uma situação onde seja perceptível a tomada de uma Consciência Histórica e o reconhecimento como sujeito histórico restabelecendo, em outro patamar, o vínculo e o interesse com a disciplina de História do currículo escolar. Permitindo de maneira concreta, na forma de situações particulares, pela construção de narrativas individuais com base em fotografias, o provocar, o estímulo no alunato para uma reflexão sobre a história de suas vidas e as consequentes formas de interpretação. Passando pela ação do lembrar e do alcançar a memória na presença de sentimentos e emoções. Pela atividade proposta e discussão sobre a consciência histórica, com o devido aporte de Jörn Rüsen, foram criadas as condições possíveis aos discentes para a reflexão e o sentir de que a História é também a sua história, uma vez que, possuidores de uma história individual, ligam-se aos demais, em uma História coletiva.
Resumo:
The ‘heroic life’ or the life of the revolutionary is one that resists or even seeks to transcend the everyday and the ordinary. The ‘banal’ vulnerabilities of everyday life, however, continue to constitute the unseen, often unspoken background of such a heroic life. This article turns to women’s memories of everyday life spent ‘underground’ in the context of the late 1960s radical left Naxalbari movement of Bengal. Drawing upon recent published memoirs and my own field interviews with middle class female (and male) activists, I outline the ways in which revolutionary femininity was imagined and lived in the everyday life of this political movement. I focus, in particular, on the gendered and classed nature of political labour, the gendering of revolutionary space, and finally, the extent to which everyday life in the ‘underground’ was a site of vulnerability and powerlessness, especially for women. I also signal how these memories of interpersonal conflict and everyday violence tend to remain buried under a collective mythicisation of the ‘heroic life’.
Resumo:
International audience
Resumo:
The effects of individual teacher expectations have been the subject of intensive research. Results indicate that teachers use their expectations to adapt their interactions with their students to some degree (as summarized in a review by Jussim & Harber, 2005). This can in turn lead to expectancy-confirming student developments. While there are studies on the Pygmalion effect on individual students, there is only little research on teacher judgements of whole classes and schools. Our study aims to extend the perspective of teacher judgements at the collective level to stereotypes within the context of school tracking. The content and structure of teachers’ school track stereotypes are investigated as well as the question of whether these stereotypical judgements are related to teachers’ perception of obstacles to their teaching and their teaching self-efficacy beliefs. Cross-sectional data on 341 teachers at two different school types from the Panel Study at the Research School „Education and Capabilities“ in North Rhine-Westphalia (PARS) (see Bos et al., 2016) were used for two purposes: First, the structure of teachers’ stereotypes was identified via an exploratory factor analysis. Second, in follow-up regression analyses, the stereotype dimensions extracted were used to predict teachers’ perceptions of obstacles to their classroom work and their individual and collective teacher self-efficacy beliefs. Results showed that – after controlling for the average cognitive abilities and the average cultural capital of the students – teacher stereotypes were indeed related to perceived obstacles concerning their classroom work and their self-efficacy beliefs. After a discussion of the strengths and limitations of the present research, the article closes with a short proposal of a future research framework for collective Pygmalion effects. (DIPF/Orig.)
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
Ongoing quest for finding treatment against memory loss seen in aging and in many neurological and neurodegenerative diseases, so far has been unsuccessful and memory enhancers are seen as a potential remedy against this brain dysfunction. Recently, we showed that gene corresponding to a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414) is a robust memory enhancer (Lopez-Aranda et al. 2009: Science). RGS14414-treatment in area V2 of visual cortex caused memory enhancement to such extent that it converted short-term object recognition memory (ORM) of 45min into long lasting long-term memory that could be traced even after many months. Now, through targeting of multiple receptors and molecules known to be involved in memory processing, we found that GluR2 subunit of AMPA receptor might be key to memory enhancement in RGS-animals. RGS14-animals showed a progressive increase in GluR2 protein expression while processing an object information which reached to highest level after 60min of object exposure, a time period required for conversion of short-term ORM into long-term memory in our laboratory set up. Normal rats could retain an object information in brain for 45min (short-term) and not for 60min. However, RGS-treated rats are able to retain the same information for 24h or longer (long-term). Therefore, highest expression of GluR2 subunit seen at 60min suggests that this protein might be key in memory enhancement and conversion to long-term memory in RGS-animals. In addition, we will also discuss the implication of Hebbian plasticity and interaction of brain circuits in memory enhancement.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
Doctor of Philosophy in Mathematics
Resumo:
Due to their unpredictable behavior, stock markets are examples of complex systems. Yet, the dominant analysis of these markets as- sumes simple stochastic variations, eventually tainted by short-lived memory. This paper proposes an alternative strategy, based on a stochastic geometry defining a robust index of the structural dynamics of the markets and based on notions of topology defining a new coef- ficient that identifies the structural changes occurring on the S&P500 set of stocks. The results demonstrate the consistency of the random hypothesis as applied to normal periods but they also show its in- adequacy as to the analysis of periods of turbulence, for which the emergence of collective behavior of sectoral clusters of firms is mea- sured. This behavior is identified as a meta-routine.
Resumo:
In the multi-core CPU world, transactional memory (TM)has emerged as an alternative to lock-based programming for thread synchronization. Recent research proposes the use of TM in GPU architectures, where a high number of computing threads, organized in SIMT fashion, requires an effective synchronization method. In contrast to CPUs, GPUs offer two memory spaces: global memory and local memory. The local memory space serves as a shared scratch-pad for a subset of the computing threads, and it is used by programmers to speed-up their applications thanks to its low latency. Prior work from the authors proposed a lightweight hardware TM (HTM) support based in the local memory, modifying the SIMT execution model and adding a conflict detection mechanism. An efficient implementation of these features is key in order to provide an effective synchronization mechanism at the local memory level. After a quick description of the main features of our HTM design for GPU local memory, in this work we gather together a number of proposals designed with the aim of improving those mechanisms with high impact on performance. Firstly, the SIMT execution model is modified to increase the parallelism of the application when transactions must be serialized in order to make forward progress. Secondly, the conflict detection mechanism is optimized depending on application characteristics, such us the read/write sets, the probability of conflict between transactions and the existence of read-only transactions. As these features can be present in hardware simultaneously, it is a task of the compiler and runtime to determine which ones are more important for a given application. This work includes a discussion on the analysis to be done in order to choose the best configuration solution.
Resumo:
A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.
Resumo:
The paper we present is part of the research project "The professional identity of teacher studies", that we are development for last 3 years. The third phase of this research put the focus on the experience of job placement of novel teachers, graduated no more than 5 years. We work with focal groups and professional experience and teacher education accounts of teachers implied in this research. Also, for any teachers, we do biographical interviews to deepen on processes of construction of professional identity. In this paper we present the Ana Belen History, a female teacher of pre-school education with an experience of 4 years in school, working in a urban school with students in risk of exclusion. This school have a educative project, commitment with the neighbourhood, joint with the community and other social groups. Ana Belen story, from professional perspective, is linked with the social politic and educational commitment of this school. Our interest is focused in the comprehension of professional identity that Ana Belen has gone forging along her personal story and how her education and job placement has contributed for it. Also we are interested in knowing how early professional experiences have influenced in her professional development as teacher. Specifically we ask ourselves about what influence have for her professional identity, that her career starts in this particular school. In consequence, this paper leads us to question the current teacher education model. In particular we are interested on the kind of professional experience that have place and, so, the kinds of commitments that enables. We understand that frameworks in which professional education and experience have place are relevant to enable more or less transformer understandings about teaching. From conceptual perspective this paper adopts a socio-critical point of view (Gergen, 1985; Kincheloe, 2001; Wenger, 1988, etc.). We understand that teaching has to be analysing according work contexts and personal stories of teachers, because we face processes historical and collective building. Teaching is the result of action of their actors, over time, and in specific stage. So, with this research we intend to break with the old gap between pre and in-service education. We think that both of them are part of the same process and are formed according similar logical; although scenes change. We understand that they are part of a continuous process in which is giving sense to different and complex settings where teaching profession is built, but they are not differenced and independent stages. The teacher work, so, is subject to particular conditions, generated from such different fields as institutional, corporative, cultural, social, political, moral, etc. It displays a kaleidoscopic view on space, time, context, ... These are the axis in which the teaching is formed, from the complexity and heterogeneity. How this complexity is articulated results in different ways to face the teacher work, according different personal and professional stories. The teacher acts with subjects in instituted contexts from relationships he has with them, which gives a situated and contingent character. But, these contexts are strongly structured and ruled according centralized and generalized positions; which is, at the very least, paradoxical. Possibly, from our point of view, same of the crisis of teaching have to explain from this paradoxical perspective and the conflict, which characterize this job (Rivas, Leite y Cortés, 2011)
Resumo:
Current industry proposals for Hardware Transactional Memory (HTM) focus on best-effort solutions (BE-HTM) where hardware limits are imposed on transactions. These designs may show a significant performance degradation due to high contention scenarios and different hardware and operating system limitations that abort transactions, e.g. cache overflows, hardware and software exceptions, etc. To deal with these events and to ensure forward progress, BE-HTM systems usually provide a software fallback path to execute a lock-based version of the code. In this paper, we propose a hardware implementation of an irrevocability mechanism as an alternative to the software fallback path to gain insight into the hardware improvements that could enhance the execution of such a fallback. Our mechanism anticipates the abort that causes the transaction serialization, and stalls other transactions in the system so that transactional work loss is mini- mized. In addition, we evaluate the main software fallback path approaches and propose the use of ticket locks that hold precise information of the number of transactions waiting to enter the fallback. Thus, the separation of transactional and fallback execution can be achieved in a precise manner. The evaluation is carried out using the Simics/GEMS simulator and the complete range of STAMP transactional suite benchmarks. We obtain significant performance benefits of around twice the speedup and an abort reduction of 50% over the software fallback path for a number of benchmarks.
Resumo:
After a crime has occurred, one of the most pressing objectives for investigators is to identify and interview any eyewitness that can provide information about the crime. Depending on his or her training, the investigative interviewer will use (to varying degrees) mostly yes/no questions, some cued and multiple-choice questions, with few open-ended questions. When the witness cannot generate any more details about the crime, one assumes the eyewitness’ memory for the critical event has been exhausted. However, given what we know about memory, is this a safe assumption? In line with the extant literature on human cognition, if one assumes (a) an eyewitness has more available memories of the crime than he or she has accessible and (b) only explicit probes have been used to elicit information, then one can argue this eyewitness may still be able to provide additional information via implicit memory tests. In accordance with these notions, the present study had two goals: demonstrate that (1) eyewitnesses can reveal memory implicitly for a detail-rich event and (2) particularly for brief crimes, eyewitnesses can reveal memory for event details implicitly that were inaccessible when probed for explicitly. Undergraduates (N = 227) participated in a psychological experiment in exchange for research credit. Participants were presented with one of three stimulus videos (brief crime vs. long crime vs. irrelevant video). Then, participants either completed a series of implicit memory tasks or worked on a puzzle for 5 minutes. Lastly, participants were interviewed explicitly about the previous video via free recall and recognition tasks. Findings indicated that participants who viewed the brief crime provided significantly more crime-related details implicitly than those who viewed the long crime. The data also showed participants who viewed the long crime provided marginally more accurate details during free recall than participants who viewed the brief crime. Furthermore, participants who completed the implicit memory tasks provided significantly less accurate information during the explicit interview than participants who were not given implicit memory tasks. This study was the first to investigate implicit memory for eyewitnesses of a crime. To determine its applied value, additional empirical work is required.