922 resultados para binary sampling
Resumo:
Feature selection aims to find the most important information to save computational efforts and data storage. We formulated this task as a combinatorial optimization problem since the exponential growth of possible solutions makes an exhaustive search infeasible. In this work, we propose a new nature-inspired feature selection technique based on bats behavior, namely, binary bat algorithm The wrapper approach combines the power of exploration of the bats together with the speed of the optimum-path forest classifier to find a better data representation. Experiments in public datasets have shown that the proposed technique can indeed improve the effectiveness of the optimum-path forest and outperform some well-known swarm-based techniques. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Feature selection has been actively pursued in the last years, since to find the most discriminative set of features can enhance the recognition rates and also to make feature extraction faster. In this paper, the propose a new feature selection called Binary Cuckoo Search, which is based on the behavior of cuckoo birds. The experiments were carried out in the context of theft detection in power distribution systems in two datasets obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques. © 2013 IEEE.
Resumo:
Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques. © 2013 Springer-Verlag.
Resumo:
We suggest a time-dependent mean-field hydrodynamic model for a binary dipolar boson-fermion mixture to study the stability and collapse of fermions in the 164Dy-161Dy mixture. The condition of stability of the dipolar mixture is illustrated in terms of phase diagrams. A collapse is induced in a disk-shaped stable binary mixture by jumping the interspecies contact interaction from repulsive to attractive by the Feshbach resonance technique. The subsequent dynamics is studied by solving the time-dependent mean-field model including three-body loss due to molecule formation in boson-fermion and boson-boson channels. Collapse and fragmentation in the fermions after subsequent explosions are illustrated. The anisotropic dipolar interaction leads to anisotropic fermionic density distribution during collapse. This study is carried out in three-dimensional space using realistic values of dipolar and contact interactions. © 2013 American Physical Society.
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In soil surveys, several sampling systems can be used to define the most representative sites for sample collection and description of soil profiles. In recent years, the conditioned Latin hypercube sampling system has gained prominence for soil surveys. In Brazil, most of the soil maps are at small scales and in paper format, which hinders their refinement. The objectives of this work include: (i) to compare two sampling systems by conditioned Latin hypercube to map soil classes and soil properties; (II) to retrieve information from a detailed scale soil map of a pilot watershed for its refinement, comparing two data mining tools, and validation of the new soil map; and (III) to create and validate a soil map of a much larger and similar area from the extrapolation of information extracted from the existing soil map. Two sampling systems were created by conditioned Latin hypercube and by the cost-constrained conditioned Latin hypercube. At each prospection place, soil classification and measurement of the A horizon thickness were performed. Maps were generated and validated for each sampling system, comparing the efficiency of these methods. The conditioned Latin hypercube captured greater variability of soils and properties than the cost-constrained conditioned Latin hypercube, despite the former provided greater difficulty in field work. The conditioned Latin hypercube can capture greater soil variability and the cost-constrained conditioned Latin hypercube presents great potential for use in soil surveys, especially in areas of difficult access. From an existing detailed scale soil map of a pilot watershed, topographical information for each soil class was extracted from a Digital Elevation Model and its derivatives, by two data mining tools. Maps were generated using each tool. The more accurate of these tools was used for extrapolation of soil information for a much larger and similar area and the generated map was validated. It was possible to retrieve the existing soil map information and apply it on a larger area containing similar soil forming factors, at much low financial cost. The KnowledgeMiner tool for data mining, and ArcSIE, used to create the soil map, presented better results and enabled the use of existing soil map to extract soil information and its application in similar larger areas at reduced costs, which is especially important in development countries with limited financial resources for such activities, such as Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV