847 resultados para asymptotically hyperbolic
Resumo:
This study proposes a utility-based framework for the determination of optimal hedge ratios (OHRs) that can allow for the impact of higher moments on hedging decisions. We examine the entire hyperbolic absolute risk aversion family of utilities which include quadratic, logarithmic, power, and exponential utility functions. We find that for both moderate and large spot (commodity) exposures, the performance of out-of-sample hedges constructed allowing for nonzero higher moments is better than the performance of the simpler OLS hedge ratio. The picture is, however, not uniform throughout our seven spot commodities as there is one instance (cotton) for which the modeling of higher moments decreases welfare out-of-sample relative to the simpler OLS. We support our empirical findings by a theoretical analysis of optimal hedging decisions and we uncover a novel link between OHRs and the minimax hedge ratio, that is the ratio which minimizes the largest loss of the hedged position. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark
Resumo:
Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec−1) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.
Resumo:
Dissolved organic carbon (DOC) concentrations in surface waters have increased across much of Europe and North America, with implications for the terrestrial carbon balance, aquatic ecosystem functioning, water treatment costs and human health. Over the past decade, many hypotheses have been put forward to explain this phenomenon, from changing climate and land-management to eutrophication and acid deposition. Resolution of this debate has been hindered by a reliance on correlative analyses of time-series data, and a lack of robust experimental testing of proposed mechanisms. In a four-year, four-site replicated field experiment involving both acidifying and de-acidifying treatments, we tested the hypothesis that DOC leaching was previously suppressed by high levels of soil acidity in peat and organo-mineral soils, and therefore that observed DOC increases a consequence of decreasing soil acidity. We observed a consistent, positive relationship between DOC and acidity change at all sites. Responses were described by similar hyperbolic relationships between standardised changes in DOC and hydrogen ion concentrations at all sites, suggesting potentially general applicability. These relationships explained a substantial proportion of observed changes in peak DOC concentrations in nearby monitoring streams, and application to a UK-wide upland soil pH dataset suggests that recovery from acidification alone could have led to soil solution DOC increases in the range 46-126% by habitat type since 1978. Our findings raise the possibility that changing soil acidity may have wider impacts on ecosystem carbon balances. Decreasing sulphur deposition may be accelerating terrestrial carbon loss, and returning surface waters to a natural, high-DOC condition.
Resumo:
We prove essential self-adjointness of a class of Dirichlet operators in ℝn using the hyperbolic equation approach. This method allows one to prove essential self-adjointness under minimal conditions on the logarithmic derivative of the density and a condition of Muckenhoupt type on the density itself.
Resumo:
We study the boundedness and compactness of Toeplitz operators Ta on Bergman spaces , 1 < p < ∞. The novelty is that we allow distributional symbols. It turns out that the belonging of the symbol to a weighted Sobolev space of negative order is sufficient for the boundedness of Ta. We show the natural relation of the hyperbolic geometry of the disc and the order of the distribution. A corresponding sufficient condition for the compactness is also derived.
Resumo:
We study the boundedness of Toeplitz operators $T_a$ with locally integrable symbols on Bergman spaces $A^p(\mathbb{D})$, $1 < p < \infty$. Our main result gives a sufficient condition for the boundedness of $T_a$ in terms of some ``averages'' (related to hyperbolic rectangles) of its symbol. If the averages satisfy an ${o}$-type condition on the boundary of $\mathbb{D}$, we show that the corresponding Toeplitz operator is compact on $A^p$. Both conditions coincide with the known necessary conditions in the case of nonnegative symbols and $p=2$. We also show that Toeplitz operators with symbols of vanishing mean oscillation are Fredholm on $A^p$ provided that the averages are bounded away from zero, and derive an index formula for these operators.
Resumo:
A model for estimating the turbulent kinetic energy dissipation rate in the oceanic boundary layer, based on insights from rapid-distortion theory, is presented and tested. This model provides a possible explanation for the very high dissipation levels found by numerous authors near the surface. It is conceived that turbulence, injected into the water by breaking waves, is subsequently amplified due to its distortion by the mean shear of the wind-induced current and straining by the Stokes drift of surface waves. The partition of the turbulent shear stress into a shear-induced part and a wave-induced part is taken into account. In this picture, dissipation enhancement results from the same mechanism responsible for Langmuir circulations. Apart from a dimensionless depth and an eddy turn-over time, the dimensionless dissipation rate depends on the wave slope and wave age, which may be encapsulated in the turbulent Langmuir number La_t. For large La_t, or any Lat but large depth, the dissipation rate tends to the usual surface layer scaling, whereas when Lat is small, it is strongly enhanced near the surface, growing asymptotically as ɛ ∝ La_t^{-2} when La_t → 0. Results from this model are compared with observations from the WAVES and SWADE data sets, assuming that this is the dominant dissipation mechanism acting in the ocean surface layer and statistical measures of the corresponding fit indicate a substantial improvement over previous theoretical models. Comparisons are also carried out against more recent measurements, showing good order-of-magnitude agreement, even when shallow-water effects are important.
Resumo:
The objective of this paper is to show that the group SE(3) with an imposed Lie-Poisson structure can be used to determine the trajectory in a spatial frame of a rigid body in Euclidean space. Identical results for the trajectory are obtained in spherical and hyperbolic space by scaling the linear displacements appropriately since the influence of the moments of inertia on the trajectories tends to zero as the scaling factor increases. The semidirect product of the linear and rotational motions gives the trajectory from a body frame perspective. It is shown that this cannot be used to determine the trajectory in the spatial frame. The body frame trajectory is thus independent of the velocity coupling. In addition, it is shown that the analysis can be greatly simplified by aligning the axes of the spatial frame with the axis of symmetry which is unchanging for a natural system with no forces and rotation about an axis of symmetry.
Resumo:
The concept of a slowest invariant manifold is investigated for the five-component model of Lorenz under conservative dynamics. It is shown that Lorenz's model is a two-degree-of-freedom canonical Hamiltonian system, consisting of a nonlinear vorticity-triad oscillator coupled to a linear gravity wave oscillator, whose solutions consist of regular and chaotic orbits. When either the Rossby number or the rotational Froude number is small, there is a formal separation of timescales, and one can speak of fast and slow motion. In the same regime, the coupling is weak, and the Kolmogorov–Arnold-Moser theorem is shown to apply. The chaotic orbits are inherently unbalanced and are confined to regions sandwiched between invariant tori consisting of quasi-periodic regular orbits. The regular orbits generally contain free fast motion, but a slowest invariant manifold may be geometrically defined as the set of all slow cores of invariant tori (defined by zero fast action) that are smoothly related to such cores in the uncoupled system. This slowest invariant manifold is not global; in fact, its structure is fractal; but it is of nearly full measure in the limit of weak coupling. It is also nonlinearly stable. As the coupling increases, the slowest invariant manifold shrinks until it disappears altogether. The results clarify previous definitions of a slowest invariant manifold and highlight the ambiguity in the definition of “slowness.” An asymptotic procedure, analogous to standard initialization techniques, is found to yield nonzero free fast motion even when the core solutions contain none. A hierarchy of Hamiltonian balanced models preserving the symmetries in the original low-order model is formulated; these models are compared with classic balanced models, asymptotically initialized solutions of the full system and the slowest invariant manifold defined by the core solutions. The analysis suggests that for sufficiently small Rossby or rotational Froude numbers, a stable slowest invariant manifold can be defined for this system, which has zero free gravity wave activity, but it cannot be defined everywhere. The implications of the results for more complex systems are discussed.
Resumo:
Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection–diffusion equations. We demonstrate how a number of Runge–Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge–Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge–Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.
Resumo:
Rafting is one of the important deformation mechanisms of sea ice. This process is widespread in the north Caspian Sea, where multiple rafting produces thick sea ice features, which are a hazard to offshore operations. Here we present a one-dimensional, thermal consolidation model for rafted sea ice. We consider the consolidation between the layers of both a two-layer and a three-layer section of rafted sea ice. The rafted ice is assumed to be composed of layers of sea ice of equal thickness, separated by thin layers of ocean water. Results show that the thickness of the liquid layer reduced asymptotically with time, such that there always remained a thin saline liquid layer. We propose that when the liquid layer is equal to the surface roughness the adjacent layers can be considered consolidated. Using parameters representative of the north Caspian, the Arctic, and the Antarctic, our results show that for a choice of standard parameters it took under 15 h for two layers of rafted sea ice to consolidate. Sensitivity studies showed that the consolidation model is highly sensitive to the initial thickness of the liquid layer, the fraction of salt release during freezing, and the height of the surface asperities. We believe that further investigation of these parameters is needed before any concrete conclusions can be drawn about rate of consolidation of rafted sea ice features.
Resumo:
Many key economic and financial series are bounded either by construction or through policy controls. Conventional unit root tests are potentially unreliable in the presence of bounds, since they tend to over-reject the null hypothesis of a unit root, even asymptotically. So far, very little work has been undertaken to develop unit root tests which can be applied to bounded time series. In this paper we address this gap in the literature by proposing unit root tests which are valid in the presence of bounds. We present new augmented Dickey–Fuller type tests as well as new versions of the modified ‘M’ tests developed by Ng and Perron [Ng, S., Perron, P., 2001. LAG length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519–1554] and demonstrate how these tests, combined with a simulation-based method to retrieve the relevant critical values, make it possible to control size asymptotically. A Monte Carlo study suggests that the proposed tests perform well in finite samples. Moreover, the tests outperform the Phillips–Perron type tests originally proposed in Cavaliere [Cavaliere, G., 2005. Limited time series with a unit root. Econometric Theory 21, 907–945]. An illustrative application to U.S. interest rate data is provided
Resumo:
Using an asymptotic expansion, a balance model is derived for the shallow-water equations (SWE) on the equatorial beta-plane that is valid for planetary-scale equatorial dynamics and includes Kelvin waves. In contrast to many theories of tropical dynamics, neither a strict balance between diabatic heating and vertical motion nor a small Froude number is required. Instead, the expansion is based on the smallness of the ratio of meridional to zonal length scales, which can also be interpreted as a separation in time scale. The leading-order model is characterized by a semigeostrophic balance between the zonal wind and meridional pressure gradient, while the meridional wind v vanishes; the model is thus asymptotically nondivergent, and the nonzero correction to v can be found at the next order. Importantly for applications, the diagnostic balance relations are linear for winds when inferring the wind field from mass observations and the winds can be diagnosed without direct observations of diabatic heating. The accuracy of the model is investigated through a set of numerical examples. These examples show that the diagnostic balance relations can remain valid even when the dynamics do not, and the balance dynamics can capture the slow behavior of a rapidly varying solution.
Resumo:
The inhibitory effects of toxin-producing phytoplankton (TPP) on zooplankton modulate the dynamics of marine plankton. In this article, we employ simple mathematical models to compare theoretically the dynamics of phytoplankton–zooplankton interaction in situations where the TPP are present with those where TPP are absent. We consider two sets of three-component interaction models: one that does not include the effect of TPP and the other that does. The negative effects of TPP on zooplankton is described by a non-linear interaction term. Extensive theoretical analyses of the models have been performed to understand the qualitative behaviour of the model systems around every possible equilibria. The results of local-stability analysis and numerical simulations demonstrate that the two model-systems differ qualitatively with regard to oscillations and stability. The model system that does not include TPP is asymptotically stable around the coexisting equilibria, whereas, the system that includes TPP oscillates for a range of parametric values associated with toxin-inhibition rate and competition coefficients. Our analysis suggests that the qualitative dynamics of the plankton–zooplankton interactions are very likely to alter due to the presence of TPP species, and therefore the effects of TPP should be considered carefully while modelling plankton dynamics.
Resumo:
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.