694 resultados para Work Integrated Learning
Resumo:
The purpose of this study is to answer the principal question, Do Real Books help the learning of English in P4?, and create a useful document to English teachers in Infant Education that are interested in working through stories. Previous to the development of the work, it has been necessary a research work and a theoretical documentation, performed using a literature review. This process has served to establish the basis of the study and to develop the subsequent didactic intervention. This second part of the study, the didactic intervention, contains all the information about how it was planned, carried to term and evaluated. There are three different ‘real books’ used as a reference in which the reader can see how to choose the correct story, how to adapt the text to the children, the daily planning, and how to evaluate the activities.
Resumo:
El objetivo de este artículo es presentar el proyecto EcoSPORTech, cuya finalidad es la creación de una empresa social con jóvenes para la realización de actividades deportivas/ocio en el medio natural, integrando las nuevas tecnologías. Este proyecto supone una colaboración interdisciplinaria dentro de la Universidad de Vic, entre las facultades de Empresa y Comunicación (FEC), la de Ciencias de la Salud y el Bienestar (FCSB) y la de Educación (FE) e integra un equipo de profesionales procedentes de los ámbitos de la empresa, el marketing, el periodismo, el deporte y la terapia ocupacional. Estos profesores formarán al grupo de jóvenes con los que se creará la empresa y dirigirán la misma. Esta empresa (cooperativa) se integra en el vivero de empresas sociales que se está creando en la Universidad de Vic.
Resumo:
This project develops a smartphone-based prototype system that supplements the 511 system to improve its dynamic traffic routing service to state highway users under non-recurrent congestion. This system will save considerable time to provide crucial traffic information and en-route assistance to travelers for them to avoid being trapped in traffic congestion due to accidents, work zones, hazards, or special events. It also creates a feedback loop between travelers and responsible agencies that enable the state to effectively collect, fuse, and analyze crowd-sourced data for next-gen transportation planning and management. This project can result in substantial economic savings (e.g. less traffic congestion, reduced fuel wastage and emissions) and safety benefits for the freight industry and society due to better dissemination of real-time traffic information by highway users. Such benefits will increase significantly in future with the expected increase in freight traffic on the network. The proposed system also has the flexibility to be integrated with various transportation management modules to assist state agencies to improve transportation services and daily operations.
Resumo:
Our work is focused on alleviating the workload for designers of adaptive courses on the complexity task of authoring adaptive learning designs adjusted to specific user characteristics and the user context. We propose an adaptation platform that consists in a set of intelligent agents where each agent carries out an independent adaptation task. The agents apply machine learning techniques to support the user modelling for the adaptation process
Resumo:
An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na+ and K+ translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P-2c-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E-1/E-2-ATPase as it undergoes conformational changes between the E-1 and E-2 forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na+ and K+ translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P-i release.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
This communication is part of a larger teaching innovation project financed by the University ofBarcelona, whose objective is to develop and evaluate transversal competences of the UB, learningability and responsibility. The competence is divided into several sub-competencies being the ability toanalyze and synthesis the most intensely worked in the first year. The work presented here part fromthe results obtained in phase 1 and 2 previously implemented in other subjects (Mathematics andHistory) in the first year of the degree of Business Administration Degree. In these subjects’ previousexperiences there were deficiencies in the acquisition of learning skills by the students. The work inthe subject of Mathematics facilitated that students become aware of the deficit. The work on thesubject of History insisted on developing readings schemes and with the practical exercises wassought to go deeply in the development of this competence.The third phase presented here is developed in the framework of the second year degree, in the WorldEconomy subject. The objective of this phase is the development and evaluation of the same crosscompetence of the previous phases, from a practice that includes both, quantitative analysis andcritical reflection. Specifically the practice focuses on the study of the dynamic relationship betweeneconomic growth and the dynamics in the distribution of wealth. The activity design as well as theselection of materials to make it, has been directed to address gaps in the ability to analyze andsynthesize detected in the subjects of the first year in the previous phases of the project.The realization of the practical case is considered adequate methodology to improve the acquisition ofcompetence of the students, then it is also proposed how to evaluate the acquisition of suchcompetence. The practice is evaluated based on a rubric developed in the framework of the projectobjectives. Thus at the end of phase 3 we can analyze the process that have followed the students,detect where they have had major difficulties and identify those aspects of teaching that can help toimprove the acquisition of skills by the students. The interest of this phase resides in the possibility tovalue whether tracing of learning through competences, organized in a collaborative way, is a goodtool to develop the acquisition of these skills and facilitate their evaluation.
Resumo:
The objective of this work was to assess the effects of integrated crop-livestock systems, associated with two tillage and two fertilization regimes, on the abundance and diversity of the soil macrofauna. Four different management systems were studied: continuous pasture (mixed grass); continuous crop; two crop-livestock rotations (crop/pasture and pasture/crop); and native Cerrado as a control. Macrofauna was sampled using a modified Tropical Soil Biology and Fertility method, and all individuals were counted and identified at the morphospecies level for each plot. A total of 194 morphospecies were found, distributed among 30 groups, and the most representative in decreasing order of density were: Isoptera, Coleoptera larvae, Formicidae, Oligochaeta, Coleoptera adult, Diplopoda, Hemiptera, Diptera larvae, Arachnida, Chilopoda, Lepidoptera, Gasteropoda, Blattodea and Orthoptera. Soil management systems and tillage regimes affected the structure of soil macrofauna, and integrated crop-livestock systems, associated with no-tillage, especially with grass/legume species associations, had more favorable conditions for the development of "soil engineers" compared with continuous pasture or arable crops. Soil macrofauna density and diversity, assessed at morphospecies level, are effective data to measure the impact of land use in Cerrado soils.
Resumo:
La asignatura troncal “Evaluación Psicológica” de los estudios de Psicología y delestudio de grado “Desarrollo humano en la sociedad de la información” de laUniversidad de Girona consta de 12 créditos según la Ley Orgánica de Universidades.Hasta el año académico 2004-05 el trabajo no presencial del alumno consistía en larealización de una evaluación psicológica que se entregaba por escrito a final de curso yde la cual el estudiante obtenía una calificación y revisión si se solicitaba. En el caminohacia el Espacio Europeo de Educación Superior, esta asignatura consta de 9 créditosque equivalen a un total de 255 horas de trabajo presencial y no presencial delestudiante. En los años académicos 2005-06 y 2006-07 se ha creado una guía de trabajopara la gestión de la actividad no presencial con el objetivo de alcanzar aprendizajes anivel de aplicación y solución de problemas/pensamiento crítico (Bloom, 1975)siguiendo las recomendaciones de la Agencia para la Calidad del Sistema Universitariode Cataluña (2005). La guía incorpora: los objetivos de aprendizaje, los criterios deevaluación, la descripción de las actividades, el cronograma semanal de trabajos paratodo el curso, la especificación de las tutorías programadas para la revisión de losdiversos pasos del proceso de evaluación psicológica y el uso del foro para elconocimiento, análisis y crítica constructiva de las evaluaciones realizadas por loscompañeros
Resumo:
Training future pathologists is an important mission of many hospital anatomic pathology departments. Apprenticeship-a process in which learning and teaching tightly intertwine with daily work, is one of the main educational methods in use in postgraduate medical training. However, patient care, including pathological diagnosis, often comes first, diagnostic priorities prevailing over educational ones. Recognition of the unique educational opportunities is a prerequisite for enhancing the postgraduate learning experience. The aim of this paper is to draw attention of senior pathologists with a role as supervisor in postgraduate training on the potential educational value of a multihead microscope, a common setting in pathology departments. After reporting on an informal observation of senior and junior pathologists' meetings around the multihead microscope in our department, we review the literature on current theories of learning to provide support to the high potential educational value of these meetings for postgraduate training in pathology. We also draw from the literature on learner-centered teaching some recommendations to better support learning in this particular context. Finally, we propose clues for further studies and effective instruction during meetings around a multihead microscope.
Resumo:
The objective of this work was to evaluate the effects of lignin, hemicellulose, and cellulose concentrations in the decomposition process of cover plant residues with potential use in no-tillage with corn, for crop-livestock integrated system, in the Cerrado region. The experiment was carried out at Embrapa Cerrados, in Planaltina, DF, Brazil in a split plot experimental design. The plots were represented by the plant species and the subplots by harvesting times, with three replicates. The cover plants Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan, Pennisetum glaucum, Mucuna aterrima, Raphanus sativus, Sorghum bicolor were evaluated together with spontaneous plants in the fallow. Cover plants with lower lignin concentrations and, consequently, higher residue decomposition such as C. brasiliensis and U. ruziziensis promoted higher corn yield. High concentrations of lignin inhibit plant residue decomposition and this is favorable for the soil cover. Lower concentrations of lignin result in accelerated plant decomposition, more efficient nutrient cycling, and higher corn yield.
Resumo:
The objective of this work was to evaluate the effect of the pasture (Urochloa brizantha) component age on soil biological properties, in a crop-livestock integrated system. The experiment was carried out in a Brazilian savannah (Cerrado) area with 92 ha, divided into six pens of approximately 15 ha. Each pen represented a different stage of the pasture component: formation, P0; one year, P1; two years, P2; three years, P3; and final with 3.5 years, Pf. Samples were taken in the 0-10 cm soil depth. The soil biological parameters - microbial biomass carbon (MBC), microbial biomass respiration (C-CO2), metabolic quotient (qCO2), microbial quotient (q mic), and total organic carbon (TOC) - were evaluated and compared among different stages of the pasture, and between an adjacent area under native Cerrado and another area under degraded pasture (PCD). The MBC, q mic and TOC increased and qCO2 reduced under the different pasture stages. Compared to PCD, the pasture stages had higher MBC, q mic and TOC, and lower qCO2. The crop-livestock integrated system improved soil microbiological parameters and immobilized carbon in the soil in comparison to the degraded pasture.
Resumo:
Se presenta un modelo de análisis del comportamiento informacional global de un colectivo de individuos (estudiantes de la Universitat Oberta de Catalunya) que tienen una percepción positiva sobre el uso de las tecnologías de la información y la comunicación y que realizan un uso intensivo de las mismas.A partir de una aproximación cualitativa, mediante 24 entrevistas y un posterior análisis del contenido, se identifican cuatro perfiles distintos de gestión de la información personal (reactivo, pasivo, exhaustivo y proactivo) en base a diez variables subyacentes (acceso, gestión y usos de la información, competenciasinformacionales, perfil cognitivo, actitud, percepción de las TIC, ámbito académico, profesional y de la vida diaria) y se ponen derelieve las diferencias de comportamiento informacional dependiendo del ámbito en el que se encuentren. La identificación de los perfiles es un estadio básico del diseño centrado en los usuarios que facilita la realización de intervenciones específicas para cada tipo de usuario, respetando requerimientos de herramientasy procesos para que puedan desarrollar su comportamiento informacional de forma eficiente y eficaz.
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed