919 resultados para Uniform Distribution of Sequences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prospective study of IgG and IgM isotypes of anticardiolipin antibodies (aCL) in a series of 100 patients with systemic lupus erythematosus was carried out. To determine the normal range of both isotype titres a group of 100 normal control serum samples was studied and a log-normal distribution of IgG and IgM isotypes was found. The IgG anticardiolipin antibody serum was regarded as positive if a binding index greater than 2.85 (SD 3.77) was detected and a binding index greater than 4.07 (3.90) was defined as positive for IgM anticardiolipin antibody. Twenty four patients were positive for IgG aCL, 20 for IgM aCL, and 36 for IgG or IgM aCL, or both. IgG aCL were found to have a significant association with thrombosis and thrombocytopenia, and IgM aCL with haemolytic anaemia and neutropenia. Specificity and predictive value for these clinical manifestations increased at moderate and high anticardiolipin antibody titres. In addition, a significant association was found between aCL and the presence of lupus anticoagulant. Identification of these differences in the anticardiolipin antibody isotype associations may improve the clinical usefulness of these tests, and this study confirms the good specificity and predictive value of the anticardiolipin antibody titre for these clinical manifestations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Steady-State Free Precession (SSFP) sequence has been widely used in low-field and low-resolution imaging NMR experiments to increase the signal-to-noise ratio (s/n) of the signals. Here, we analyzed the Scrambled Steady State - SSS and Unscrambled Steady State - USS sequences to suppress phase anomalies and sidebands of the 13C NMR spectrum acquired in the SSFP regime. The results showed that the application of the USS sequence allowed a uniform distribution of the time interval between pulses (Tp), in the established time range, allowing a greater suppression of phase anomalies and sidebands, when compared with the SSS sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution and stocks of soil organic matter (SOM) compartments after Pinus monoculture introduction in a native pasture area of a Cambisol, Santa Catarina, Brazil, were investigated. Pinus introduction increased soil acidity, content of exchangeable Al+3 and diminished soil nutrients. Nevertheless, soil C stock increased in all humic fractions of the 0-5 cm layer after Pinus afforestation. In the subsurface, the vegetation change only promoted SOM redistribution from the NaOH-extractable humic substances to a less hydrophobic humin fraction. Under Pinus, soil organo-mineral interactions were relevant up to a 15 cm depth, while in pasture environment, this mechanism occurred mainly in the surface layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the sol-gel mixed oxide SiO2/TiO2 property, ST, as prepared, and submitted to heat treatment a 773 K, STC. SEM and EDS images show, within magnification used, a uniform distribution of the TiO2 particles in SiO2/TiO2 matrix. Both, ST and STC adsorb hydrogen peroxide on the surface and through EPR and UV-Vis diffuse reflectance spectra, it was possible to conclude that the species on the surface is the peroxide molecule attached to the Lewis acid site of titanium particle surface, alphaTi(H2O2)+. As the material is very porous, presumably the hydrogen peroxide molecule is confined in the matrix pores on the surface, a reason why the adsorbed species presents an exceptional long lived stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to test the hypothesis that the distribution of tree species in a fragment of submontane seasonal semideciduous forest, a buffer zone in the Parque Estadual do Rio Doce, Minas Gerais, is influenced by geomorphological and weather and soil variables, therefore it can represent a source of information for the restoration of degraded areas where environmental conditions are similar to those of the study area. A detailed soil survey was conducted in the area by sampling three soil profiles per slope segment, totaling 12 profiles. To sample the topsoil, four composite samples were collected from the 10-20 cm layers in each topographic range totaling 16 composite samples. In the low ramp and the lower and upper concave slopes, the texture ranged from clay to sandy-clay. The soil and topographic gradient was characterized by changes in the soil physical-chemical properties. The soil in the 10-20 cm sampled layer was sandier, slightly more fertile and less acid in the low ramp than the clayer soil, nutrient-poor and highly acid soil at the top. The soil conditions in the lower and upper slope of the sampled layers, in turn, were intermediate. The P levels were limiting in all soils. The species distribution along the topographic gradient was associated with variations in chemical fertility, acidity and soil texture. The distribution of Pera leandri, Astronium fraxinifolium, Pouteria torta, Machaerium brasiliense and Myrcia rufipes was correlated with high aluminum levels and to low soil fertility and these species may be indicated for restoration of degraded areas on hillsides and hilltops in regions where environmental conditions are similar. The distribution of Pouteria venosa, Apuleia leiocarpa and Acacia polyphylla was correlated with the less acid and more fertile soil in the environment of the low ramps, indicating the potential for the restoration of similar areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACTThis study aimed to analyze the vertical and diameter structure and the spatial distribution pattern of Bauhinia cheilantha in two Caatinga fragments in Sergipe, Brazil, at different regeneration stages. Thirty plots were demarcated in area I (Canindé de São Francisco and Poço Redondo), which has vegetation regeneration, and 25 plots in area II (Porto da Folha) with preserved vegetation, both having 400 m2. All B. cheilanthaindividuals had their height and circumference (circumference at breast height > 6 cm) measured. Possible differences in height and diameter at breast height were tested in the two populations by using Student’s T-test. The distribution pattern of species was calculated through Payandeh’s index. We sampled 154 B. cheilantha individuals, equivalent to 33.3% of the plots in area I and in 1,027 individuals in area II, totaling 100% frequency. Height and the diameter of the two populations were statistically different, where AI achieved all values lower than AII. The spatial distribution pattern of B. cheilantha found in both areas was aggregate, with values of 11.85 and 9.00, respectively. Thus, it became clear that the population in AII is at a more advanced successional status than AI, due to its longer conservation time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visceral Leishmaniasis (VL) is caused by protozoan of genus Leishmania and transmitted by sand flies of genus Lutzomyia, which has been adapted to the peridomicile environment where dogs are their mainly food source, increasing the risk for human cases. In this study, techniques of geoprocessing and spatial statistics were utilized as a contribution to understanding the epidemiological dynamics of VL in the urban area of Ilha Solteira, SP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the effect of horizontal plate meter with oblong holes operating with one or two seed outlets at different speeds over the accuracy of longitudinal distribution of common bean seeds (Phaseolus vulgaris L.). The experiment was performed in laboratory using the meter with one and two seed outlet points in relation to ten tangential disk plate speeds (0.03 to 0.30 m s-1). It was used a complete randomized design with four replications, summing up 80 experimental treatments. Tangential speed quantitative factor was estimated through a 2nd order polynomial regression. There was no significant difference in the behavior of the seed meter operating with one or two outlets in the metering of bean seeds in all tested speeds, with percentage of single seeds spacing over 60% in tangential speeds below of 0.24 m s-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irrigation with domestic sewage effluent (DSE) has been recommended by subsurface dripping, as it can obtain a high rate of irrigation efficiency and faster use of salts in comparison with other irrigation methods. The study aimed at evaluating the area, the length and the effective depth of the root system of sugarcane irrigated with DSE by subsurface drip system and with different irrigation rates at depths of 0.00-0.20, 0.20-0.40, 0.40-0.60 and 0.60-0.80m. The experiment was carried out in the municipality of Piracicaba, in the state of São Paulo (SP), Brazil, in a sugarcane area irrigated with DSE in a completely randomized blocks set up in furrows, with three replications and four treatments, which are: one area without irrigation (AWI) and three irrigated areas meeting 50% (T50%), 100% (T100%) and 200% (T200%) of the crop's water need between each round of irrigation. T100% and T200% provided smaller areas and lengths of roots in the two deepest layers, as compared to AWI and T50%, which stimulated the development of deeper roots due to the water stress. TWI, T100% and T200% presented 80% of the roots up to a depth of 0.40m and T50% treatment presented 76.43% of roots total.