867 resultados para Unified Theory of Acceptance and Use of technology (UTAUT)
Resumo:
This report presents a new theory of internal marketing. The thesis has developed as a case study in retrospective action research. This began with the personal involvement of the author in an action research project for customer service improvement at a large Australian retail bank. In other words, much of the theory generating ‘research’ took place after the original project ‘action’ had wound down. The key theoretical proposition is that internal marketing is a relationship development strategy for the purpose of knowledge renewal. In the banking case, exchanges of value between employee participants emerged as the basis for relationship development, with synergistic benefits for customers, employees and the bank. Relationship development turned out to be the mediating variable between the learning activity of employee participants at the project level and success in knowledge renewal at the organisational level. Relationship development was also a pivotal factor in the motivation and customer consciousness of employees. The conclusion reached is that the strength of relationship-mediated internal marketing is in combining a market focused commitment and employee freedom in project work to achieve knowledge renewal. The forgotten truth is that organisational knowledge can be renewed through dialogue and learning, through being trustworthy, and by gaining the trust of employees in return.
Resumo:
Processor architects have a challenging task of evaluating a large design space consisting of several interacting parameters and optimizations. In order to assist architects in making crucial design decisions, we build linear regression models that relate Processor performance to micro-architecture parameters, using simulation based experiments. We obtain good approximate models using an iterative process in which Akaike's information criteria is used to extract a good linear model from a small set of simulations, and limited further simulation is guided by the model using D-optimal experimental designs. The iterative process is repeated until desired error bounds are achieved. We used this procedure to establish the relationship of the CPI performance response to 26 key micro-architectural parameters using a detailed cycle-by-cycle superscalar processor simulator The resulting models provide a significance ordering on all micro-architectural parameters and their interactions, and explain the performance variations of micro-architectural techniques.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
Hamilton’s theory of turns for the group SU(2) is exploited to develop a new geometrical representation for polarization optics. While pure polarization states are represented by points on the Poincaré sphere, linear intensity preserving optical systems are represented by great circle arcs on another sphere. Composition of systems, and their action on polarization states, are both reduced to geometrical operations. Several synthesis problems, especially in relation to the Pancharatnam-Berry-Aharonov-Anandan geometrical phase, are clarified with the new representation. The general relation between the geometrical phase, and the solid angle on the Poincaré sphere, is established.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
The theory of erosive burning has been constructed front first principles using turbulent boundary layer concepts. It is shown that the problem constitutes one of solution of flame propagation equation for turbulent flow. The final approximate solution for the case of single step overall kinetics reveals the combined effects of fluid mechanics and chemical kinetics. The results obtained from this theory are compared with earlier experimental results. The dependence of erosive burning characteristics on various parameters has been elucidated.
Resumo:
We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarily. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can be included in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K-l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.
Resumo:
XANES in the K-edge of copper in the systems CuO, Cu(OH)2, La2CuO4, Cu3AsO4 and CuOHF have been investigated and transitions have been assigned to the observed structures. The measurements have been used for calculating the first coordination bond distance in the above systems. It is observed that the values so determined agree fairly well with crystallographic values.
Resumo:
The status of the tree biomass resource was investigated in Ungra, a semi-arid village ecosystem in South India. There were 57 tree species with 12 trees capita−1 and 35 trees ha−1. Multiple benefit yielding local tree species dominated the village ecosystem, while fuel only or single end use trees accounted for a small proportion of trees. The standing tree biomass is adequate to meet the requirement of biomass fuels for cooking only for about two years. Village tree biomass is presently being depleted largely for export to urban areas. Tree regeneration is now characterized by transformation from multiple-use local tree species to a few single-use species. A large potential exists for tree biomass production along field boundaries (bunds), stream banks and roadsides. Biomass estimation equations were developed for 10 species.
Resumo:
The modern subject is what we can call a self-subjecting individual. This is someone in whose inner reality has been implanted a more permanent governability, a governability that works inside the agent. Michel Foucault s genealogy of the modern subject is the history of its constitution by power practices. By a flight of imagination, suppose that this history is not an evolving social structure or cultural phenomenon, but one of those insects (moth) whose life cycle consists of three stages or moments: crawling larva, encapsulated pupa, and flying adult. Foucault s history of power-practices presents the same kind of miracle of total metamorphosis. The main forces in the general field of power can be apprehended through a generalisation of three rationalities functioning side-by-side in the plurality of different practices of power: domination, normalisation and the law. Domination is a force functioning by the rationality of reason of state: the state s essence is power, power is firm domination over people, and people are the state s resource by which the state s strength is measured. Normalisation is a force that takes hold on people from the inside of society: it imposes society s own reality its empirical verity as a norm on people through silently working jurisdictional operations that exclude pathological individuals too far from the average of the population as a whole. The law is a counterforce to both domination and normalisation. Accounting for elements of legal practice as omnihistorical is not possible without a view of the general field of power. Without this view, and only in terms of the operations and tactical manoeuvres of the practice of law, nothing of the kind can be seen: the only thing that practice manifests is constant change itself. However, the backdrop of law s tacit dimension that is, the power-relations between law, domination and normalisation allows one to see more. In the general field of power, the function of law is exactly to maintain the constant possibility of change. Whereas domination and normalisation would stabilise society, the law makes it move. The European individual has a reality as a problem. What is a problem? A problem is something that allows entry into the field of thought, said Foucault. To be a problem, it is necessary for certain number of factors to have made it uncertain, to have made it lose familiarity, or to have provoked a certain number of difficulties around it . Entering the field of thought through problematisations of the European individual human forms, power and knowledge one is able to glimpse the historical backgrounds of our present being. These were produced, and then again buried, in intersections between practices of power and games of truth. In the problem of the European individual one has suitable circumstances that bring to light forces that have passed through the individual through centuries.
Resumo:
A molecular theory of underdamped dielectric relaxation of a dense dipolar liquid is presented. This theory properly takes into account the collective effects that are present (due to strong intermolecular correlations) in a dipolar liquid. For small rigid molecules, the theory again leads to a three-variable description which, however, is somewhat different from the traditional version. In particular, two of the three parameters are collective in nature and are determined by the orientational pair correlation function. A detailed comparison between the theory and the computer simulation results of Neria and Nitzan is performed and an excellent agreement is obtained without the use of any adjustable or free parameter - the calculation is fully microscopic. The theory can also provide a systematic description of the Poley absorption often observed in dipolar liquids in the high-frequency regime.
Resumo:
Complexity theory is an important and growing area in computer science that has caught the imagination of many researchers in mathematics, physics and biology. In order to reach out to a large section of scientists and engineers, the paper introduces elementary concepts in complexity theory in a informal manner, motivating the reader with many examples.