898 resultados para Thermo-gravimetric
Resumo:
Nano-hydroxyapatite (HA)/poly(L-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2-3 mu m were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM).
Resumo:
High-performance polyimide fibers possess man), excellent properties, e.g., outstanding thermal stability and mechanical properties and excellent radiation resistant and electrical properties. However, the preparation of fibers with good mechanical properties is very difficult. In this report, a biphenvl polyimide from 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline is synthesized in p-chlorophenol by one-step polymerization. The solution is spun into a coagulation bath of water and alcohol via dry-jet wet-spinning technology. Then, the fibers are drawn in two heating tubes. Thermal gravimetric analysis, thermal mechanical analysis, and dynamic mechanical analysis (DMA) are performed to study the properties of the fibers. The results show that the fibers have a good thermal stability at a temperature of more than 400degreesC. The linear coefficient of thermal expansion is negative in the solid state and the glass transition temperature is about 265degreesC. DMA spectra indicate that the tandelta of the fibers has three transition peaks, namely, alpha, beta, and gamma transition. The alpha and gamma transition temperature, corresponding to the end-group motion and glass transition, respectively, extensively depends on the applied frequency, while the beta transition does not.
Resumo:
An aromatic polyimide was synthesized via a one-step polycondensation reaction between biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxydianiline (ODA) in p-chlorophenol. The polyimide (BPDA-ODA) solution dopes were spun into fibers by means of dry-jet wet spinning. The as-spun fibers were drawn and treated in heating tubes for improving the mechanical properties. The thermal treatment on the fibers resulted in a relatively high tensile strength and modulus. Thermal mechanical analysis (TMA) was employed to study the linear coefficient of thermal expansion (CTE). Thermal gravimetry analysis (TGA) spectra showed that the BPDA-ODA fibers possessed an excellent property of thermo-oxidative degradation resistance. The sonic modulus E-s of the polyimide fibers was measured.
Resumo:
A novel method of grafting ring-opening polymerization of L-lactide (LLA) onto the surface of hydroxyapatite nano-particles (n-HAP) was developed. PLLA was directly connected onto the HAP surface through a chemical linkage. The PLLA-g-HAP particles could be stably dispersed in organic solvent such as chloroform for several weeks. The n-HAP particles still retained the original dimension and shape after the grafting of PLLA. Compared with the P-31 MAS-NMR spectrum of pure HAP powders, there appeared a downfield displacement of 1.2 ppm in the spectrum of PLLA-g-HAP. Fourier transformation infrared (FT-IR) spectra further confirmed the existence of PLLA on the surface of PLLA-g-HAP. The amount of grafted polymer determined by thermal gravimetric analysis (TGA) was about 6% in weight. The tensile strength and elongation at break of the PLLA/PLLA-g-HAP composite containing 8 wt% of PLLA-g-HAP were 55 MPa and about 10-13%, respectively, while those of the PLLA/n-HAP composites were 40 MPa and 3-5%, respectively.
Resumo:
Preparation of poly(vinylidene fluoride-co-hexafluoro propylene) (F2.6) flat-sheet asymmetric porous membrane has been studied for the first time. Factors affecting F2.6 membrane pore structure and permeate performance, such as macromolecule pore formers (polyethylene glycol-400, 1000, 1540, 2000 and 6000), the small molecule former (glycerol), swelling agent (trimethyl phosphate) in casting solution, precipitating bath component and temperature, exposure time and ambient humidity, were investigated in detail. Average pore radius and porosity were used to characterize F2.6 membrane structure, and respectively, determined by ultrafiltration and gravimetric method for the wet membrane. Morphology of the resultant membranes was observed by scanning electronic microscopy (SEM). Final test on permeate performance of F2.6 porous membrane was carried out by a direct contact membrane distillation (DCMD) setup. The experimental F2.6 membrane exhibits a higher distilled flux than PVDF membrane under the same operational situations. The determination of contact angle to distilled water also reveals higher hydrophobic nature than that of PVDF membrane.
Resumo:
The polymeric films have been prepared based on blends of chitosan with two cellulose ethers-hydroxypropylmethylcellulose and methylcellulose by casting from acetic acid solutions. The films were transparent and brittle in a dry state but an immersion of the samples in deionized water for over 24 h leads to their disintegration or partial dissolution. The miscibility of the polymers in the blends has been assessed by infrared spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis. It was shown that although weak hydrogen bonding exists between the polymer functional groups the blends are not fully miscible in a dry state.
Resumo:
The Sr2Mg(BO3)(2) phosphors doped respectively with Tm3+, Tb3+ and Dy3+ as activator were prepared by high temperature solid-state reaction. All the thermo luminescence curves of the phosphors consisted of two isolated peaks and the Dy3+ activated sample exhibited the strongest thermo luminescence intensity. The kinetic parameters of the thermoluminescence of Sr2Mg(BO3)(2):0.04 Dy were calculated employing the peak shape method and 3 dimensional thermo luminescent emission spectra were observed peaking at 480, 579, 662 and 755 nm due to the characteristic transition of Dy3+. In addition, the pre-irradiation heat-treatment and the thermoluminescence dose response of Sr2Mg(BO3)(2):0.04 Dy were investigated.
Resumo:
A series of strong solid acids composed of WO3/ZrO2 were prepared. Their crystal structure, surface state, and acidity were determined by the methods of X-ray diffraction, thermal gravimetric and differential thermal analysis, temperature-programmed reduction, laser Raman, and acidity measurement. The results revealed that ZrO2 in WO3/ZrO2 existed mainly in the tetragonal phase, the addition of WO3 plays an important role in stabilizing the tetragonal phase of ZrO2, and all of the samples possessed large surface areas. WO3 in WO3/ZrO2 is mainly monolayer dispersed, and a small amount crystallized on the ZrO2 surface and partly reacted with ZrO2 to form the bond of Zr-O-W, acting as the strong solid acid center. The catalytic properties of WO3/ZrO2 strong solid;acids for alkylation of isobutane with butene at different conditions were investigated. They had a better reaction performance than other strong solid acids; a parallel relationship could be drawn between the catalytic activity and the acid amounts as well as the acidic strength of the catalysts.
Resumo:
Three organo-soluble polyimide powders have been synthesized. Their imidization was verified by Fourier transform infrared (FTIR) and thermal gravimetric analysis (TGA) techniques. The amorphous morphology of their thin films were confirmed by X-ray diffraction. Polyimide thin films were prepared by solution casting or spin coating. UV-visible transmission spectra of thin films revealed that they are almost transparent in the range of visible light. With in-plane orientation, revealed by FTIR spectra, negative birefringence (Delta n) of thin films were observed, and refractive indices of the thin films along the film plane (n(TE)) and normal to the plane (n(TM)) were measured by a prism coupler. Because of negative birefringence of the thin films, they tan be substituted for the compensation films for twisted nematic liquid crystal displays (TN-LCDs) to extend their viewing angles. In this paper, a 90 degrees C TN-LCD and 120 degrees C TN-LCD were taken as examples to show the compensation effect of thin films of a qualified polyimide. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Copolymers based on monomers phenolphthalein (PP)/4,4'-thiodiphenol (Bis-T)/4,4'-dichlorodiphenylsulfone (DCDPS) were prepared by a route involving the toluene, N-methyl-2-pyrrolidone and anhydrous potassium carbonate synthesis. The range of optimum reaction temperature was between 185 and 195 degrees C. The copolymers were characterized by C-13 NMR, differential scanning calorimetry (DSC) and torsion braid analysis. It was found that all of the copolymers were random and homogeneous and their glass transition temperatures (T-g) decreased linearly with an increase of Bis-T contents in the copolymers. The thermal stability determined by thermogravimetry analysis in air atmosphere indicated that the copolymer had better resistance to thermo-oxidative degradation. Dynamic mechanical measurement showed that (PP/Bis-T) PES copolymers containing 0-50 mol% of Bis-T components had two secondary relaxations. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Some results on the thermal analysis of polyimides and polyaryl ether sulfones, some reactions and the purity determination of the monomers, and the thermal stability and kinetic analysis of the thermo-oxidative degradation of these polymers are described.
Resumo:
Rare earth elements (RFEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method. The results showed that they were hydrogenous crusts with average Sigma REE content of 2084.69 mu g/g and the light REE (LREE)/heavy REE (HREE) ratio of 4.84. The shale-normalized PEE patterns showed positive Ce anomalies. The total content of strictly trivalent REEs increased with water depth. The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 in were lower than those below 2000 m. The change in RE E with water depth could be explained by two processes: adsorptive scavenging by setting matters and behaviors of REE in seawater. However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux. The Cc in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.
Resumo:
本文搜集了我国东海及琉球沟弧盆系15个航次373个热流数据,并按其精度进行了初步的整理分类,发现这一区域的热流呈现出东西分带南北分块的分布格局,和这一区域的构造格局有着明显的对应关系。琉球海沟地区有着极低热流值,这和板块下插冷却模型相一致,冲绳海槽区出现了巨高热流值,而且数值变化很大,这和弧后盆地的拉张形成及其热液活动有关。
Resumo:
1. This paper investigated the bioenergetic responses of the sea cucumber Apostichopus japonicus (wet weights of 36.5 +/- 1.2 g) to different water temperatures (5, 10, 15, 20, 25 and 30 degrees C) in the laboratory. 2. Results showed that theoretically the optimal temperatures for energy intake and scope for growth (SFG) of sub-adult A. japonicus was at 15.6 and 16.0 degrees C, respectively. The aestivation threshold temperature for this life-stage sea cucumber could be 29.0 degrees C by taking feeding cessation as the indication of aestivation. 3. Our data suggests that A. japonicus is thermo-sensitive to higher temperature, which prevents it from colonising sub-tropical coastal zones. Therefore, water temperature plays an important role in its southernmost distribution limit in China. 4. The potential impact of global ocean warming on A. japonicus might be a northward shift in the geographical distribution. Crown Copyright (C) 2009 Published by Elsevier Ltd, All rights reserved.