486 resultados para Th1


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visceral leishmaniasis (VL) is endemic in many countries, including Brazil. The protozoan Leishmania infantum, is the etiological agent of VL, and is transmitted by the bite of female sandflies during the blood meal. The majority of subjects when exposed to the parasite do not develop the disease, because of development of Th1 cellular responses. Those who have develop signs of VL such as fever, weight loss, hepatosplenomegaly, have impairment of the cellular immune response, specific to the Leishmania antigens. We evaluated whether the specififc anergy during symptomatic VL, may be associated with changes in T cells costimulatory molecules or their ligands in CD14+ monocytes. There is an increase in CTLA-4 porcentage on CD4+ T lymphocytes (p=0.001) and ICOS on CD4+ and CD8+ T cells (p=0.002 to CD4+ and p=0.003 to CD8+), after stimulation by soluble Leishmania antigen (SLA) during active visceral leishmaniasis, and that there is a higher percentage of these molecules ex vivo, when comparing symptomatic to recovered individuals (p=0.04 to CTLA-4 in CD4+, and p=0.001 to ICOS in CD4+ and p=0.026 to CD8+). Moreover, we found a high gene expression of CTLA-4, OX-40 and ICOS during active VL. CD40, CD80, CD86, HLA-DR and ICOSL molecules do not suffer changes during disease. There is IFN-γ production by the peripheral blood cells, after SLA stimulation, by peripheral blood cells in symptomatic subjects; however, there is a decrease of the ratio IFN-γ/IL-10, which is reversed after clinical recovery. The impairment of some costimulatory molecules pathways during symptomatic VL could inhibit the ability of phagocytes to kill Leishmania and could facilitate their survival and the proliferation inside macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodontal disease is a chronic inflammatory condition primarily caused by bacteria in dental biofilm, which interact with the host, thus determining the nature of the resulting disease. Despite the wide knowledge about the pathogenesis of these diseases, the exact composition of the T cell profile during the active phase of the disease (Th1, Th2 or Th17) remains unknown. This study aimed to evaluate by immunohistochemical expression, the presence of the markers (IL-17, IL-23 and RORγt), involved in Th17 response in clinically healthy gingiva cases (n = 32), biofilm-induced gingivitis (n = 30), chronic periodontitis (n = 32) and aggressive periodontitis (n = 25), in order to analyze if the expression and/or distribution of these molecules in lymphocytes and macrophages, present in the inflammatory infiltrate of periodontal tissue, influences the tissue destruction observed in these diseases. The morphological analysis of cases was performed which assessed the intensity of the inflammatory infiltrate in mild, moderate and intense. For each case, in the area with the most representative immunostaining, 5 fields were chosen and analyzed, both for the intensity of the inflammatory infiltrate as for the quantity of immunostained cells, based on predetermined scores: score 0 (absence of inflammatory infiltrate/immunostaining), score 1 (the infiltrate/immunostaining covered less than 25% of the field area), score 2 (the infiltrate/immunostaining occupied between 25 and 50%) and score 3 (infiltrate/immunostaining present in over 50% of the field area). From this, a median was generated representing each case. The intensity of the inflammatory infiltrate correlated with the disease progression, in other words, it was crescent from clinically healthy gingiva to aggressive periodontitis (P <0.001). It was detected the presence of IL-17, IL-23 and RORγt in most of the evaluated cases and the number of immunostained cells correlated with the intensity of the inflammatory infiltrate (P <0.001) and with the clinical parameters analyzed (P <0.001), showing a positive correlation, mainly moderate. Aggressive periodontitis showed a higher percentage of immunostaining for all markers in relation to other clinical conditions assessed, suggesting a possible association of these markers with the progression of this disease, in which the higher the loss of periodontal support, the greater the amount of inflammatory infiltrate and larger the number of immunostained cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uranium concentrations in marine calcareous material of a biological origin varied between 0.0X and 0.X p.p.m. with the exception of corals which had concentrations of several p.p.m. The aragonitic oolites and aragonite precipitated from sea-water had values similar to those of the corals. A geochronology based on the growth of ionium (thorium-230) from uranium is applicable not only to corals, as previous investigators have pointed out, but also to oolites. Several examples of "oolite ages" are given. The uranium content of ferromanganese minerals from pelagic deposits is of the order of from 4 to 5 p.p.m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using spectrochemical techniques Fe, Si, Mg, Co, Ni, Cu, V, Mo, Ti and Tl have been estimated in nineteen manganese nodules, eight from the Atlantic ocean, seven from the Pacific ocean and four from the Indian ocean. Though data on more samples are required before firm and detailed conclusions can be made about the distribution of elements in manganese nodules, several distinct features appear when the data on the nineteen samples are examined. Certain elements appear to enrich more strongly than others. For example, relative to igneous rocks Mo is much more strongly enriched than V. For several elements (Ni, Cu and particularly Co and Tl) the degree of enrichment in two Fe-low nodules is far smaller than in the other nodules. The magnitude of dispersion of concentration appears to vary considerably for different elements; thus, whereas variation of concentration of V is relatively small, that of Ni, Cu, Co and Tl is far larger. The statistical nature of the distribution of Fe in manganese nodules appears to be characteristic and different from that of the other elements studied so far. Of the possible inter-element relationships examined that of Ni-Cu appears to be the most strongly developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015.To determine the immunological profile most important for IRIS prediction, we evaluated 20 baseline plasma biomarkers in Acquired Immunodeficiency Syndrome (AIDS) patients initiating antiretroviral therapy (ART). Patients were enrolled in a randomized, placebo-controlled ART initiation trial in South Africa and Mexico to test whether maraviroc could prevent IRIS. Participants were classified prospectively as having IRIS within 6. months of ART initiation. Twenty plasma biomarkers were measured at study enrollment for 267 participants. Biomarkers were tested for predicting IRIS with adjustment for covariates chosen through forward stepwise selection. Sixty-two participants developed IRIS and of these 21 were tuberculosis (TB)-IRIS. Baseline levels of vitamin D and higher d-dimer, interferon gamma (IFNγ), and sCD14 were independently associated with risk of IRIS in multivariate analyses. TB-IRIS cases exhibited a distinct biosignature from IRIS related to other pathogens, with increased levels of C-reactive protein (CRP), sCD14, IFNγ, and lower levels of Hb that could be captured by a composite risk score. Elevated markers of Type 1 T helper (Th1) response, monocyte activation, coagulation and low vitamin D were independently associated with IRIS risk. Interventions that decrease immune activation and increase vitamin D levels warrant further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.

microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.

To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.

A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.

Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B cells mediate immune responses via the secretion of antibody and interactions with other immune cell populations through antigen presentation, costimulation, and cytokine secretion. Although B cells are primarily believed to promote immune responses using the mechanisms described above, some unique regulatory B cell populations that negatively influence inflammation have also been described. Among these is a rare interleukin (IL)-10-producing B lymphocyte subset termed “B10 cells.” B cell-derived IL-10 can inhibit various arms of the immune system, including polarization of Th1/Th2 cell subsets, antigen presentation and cytokine production by monocytes and macrophages, and activation of regulatory T cells. Further studies in numerous autoimmune and inflammatory models of disease have confirmed the ability of B10 cells to negatively regulate inflammation in an IL-10-dependent manner. Although IL-10 is indispensable to the effector functions of B10 cells, how this specialized B cell population is selected in vivo to produce IL-10 is unknown. Some studies have demonstrated a link between B cell receptor (BCR)-derived signals and the acquisition of IL-10 competence. Additionally, whether antigen-BCR interactions are required for B cell IL-10 production during homeostasis as well as active immune responses is a matter of debate. Therefore, the goal of this thesis is to determine the importance of antigen-driven signals during B10 cell development in vivo and during B10 cell-mediated immunosuppression.

Chapter 3 of the dissertation explored the BCR repertoire of spleen and peritoneal cavity B10 cells using single-cell sequencing to lay the foundation for studies to understand the full range of antigens that may be involved in B10 cell selection. In both the spleen and peritoneal cavity B10 cells studied, BCR gene utilization was diverse, and the expressed BCR transcripts were largely unmutated. Thus, B10 cells are likely capable of responding to a wide range of foreign and self-antigens in vivo.

Studies in Chapter 4 determined the predominant antigens that drive B cell IL-10 secretion during homeostasis. A novel in vitro B cell expansion system was used to isolate B cells actively expressing IL-10 in vivo and probe the reactivities of their secreted monoclonal antibodies. B10 cells were found to produce polyreactive antibodies that bound multiple self-antigens. Therefore, in the absence of overarching active immune responses, B cell IL-10 is secreted following interactions with self-antigens.

Chapter 5 of this dissertation investigated whether foreign antigens are capable of driving B10 cell expansion and effector activity during an active immune response. In a model of contact-induced hypersensitivity, in vitro B cell expansion was again used to isolate antigen-specific B10 clones, which were required for optimal immunosuppression.

The studies described in this dissertation shed light on the relative contributions of BCR-derived signals during B10 cell development and effector function. Furthermore, these investigations demonstrate that B10 cells respond to both foreign and self-antigens, which has important implications for the potential manipulation of B10 cells for human therapy. Therefore, B10 cells represent a polyreactive B cell population that provides antigen-specific regulation of immune responses via the production of IL-10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human β-defensins (hBDs) are a family of cationic peptides able to directly kill a wide range of microorganisms including bacteria, fungi and viruses. In addition to their antimicrobial activities, defensins also contribute to the modulation of both the host innate and adaptive immunity. In this project, we demonstrate that the αCD3/28 co-stimulation of human CD4+ T cells in the presence of 10μg/ml hBD-2 or hBD-3 together causes an up-regulation in numbers of CD4+CD69+CD25+ and CD4+CD69-CD25+ T cell subsets, indicating that the treatment of hBD-2 and 3 enhances CD4+ T cell activation. Consistent with this finding, proliferation assay using CFSE suggests that hBD-2 and hBD-3 treatment in vitro induces the proliferation of CD4+ T cells following by 96hrs culture. Analysis of expression of the regulatory T cells (Tregs) specific marker, FoxP3, reveals a shift in the CD4+CD127-CD25+ Treg subset at 18hrs. However, at the later time point, we found that the percentage of FoxP3+cells decreased in the CD4+CD127-CD25+ Treg population, whereas the presence of the FoxP3+CTLA-4+ Treg subset increased. These data indicate that Treg suppressive function may be potentially defective following the co-incubation of purified T cells with either hBD-2 or hBD-3 for 42hrs in vitro due to the apparent loss of FoxP3 expression. We further characterise the role of hBD-2 and hBD-3 in driving human CD4+ T cells polarisation. Our in vitro data suggests that treatment with hBD-2 and hBD-3 can not only induces effector T cell (Teff) differentiation into RORγt+T-bet+ (Th17/Th1) cells, but can also trigger the differentiation of Treg expressing RORγt and T-bet rather than the master controller of Treg function, FoxP3. This apparent plasticity of T cell phenotype allows them to convert from Treg to Th1/17-like effector T cell phenotype following 18hrs in culture. By 42hrs in culture, treatment with hBD-2 and hBD-3 induced both Teff cell and Treg cell differentiation towards the Th17-like phenotype. Compared with the treatment with hBD-2, treatment with hBD-3 induced a more pronounced effect to increase levels of RORγt in CD4+ T cells. This elevated expression may, in turn, be responsible for the induction of higher IL-17A secretion. Consistent with this idea, it was found that treatment with hBD-3 but not hBD-2 was capable of inducing the higher level of secretion of IL-17A. Additionally, treatment with hBD-3 induced an increased expression of IL-6, which is capable of driving the differentiation of naïve T cells towards IL-17-producing Th17 cells. Functionally, using the Treg suppression assay, the data suggested that hBD-2 may dampen down Treg cell ability to induce suppression of Teff cell activity. Interestingly, co-culture with hBD-2 would also appear to increase Teff cell resistance to Treg immunoregulation in vitro. Further investigation using microarray gene analysis revealed chemokine C-C motif ligand 1 (CCL1) as potential genes responding to hBD-2 treatment. The blockade of CCL1 has been reported to inhibit Treg suppressive function. Thus, this study explored the function of these antimicrobial candidates in regulating CD4+ T cell plasticity which could result in hBD-2 and hBD-3 being able to regulate its own production, but also may regulate Treg and Teff cell development and function, thus strengthening the link between innate and adaptive immunity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of chemokine receptors (CKR) in natural killer- (NK-) cells have already been published, but only a few gave detailed information on its differential expression on blood NK-cell subsets. We report on the expression of the inflammatory and homeostatic CKR on normal blood CD56(+low) CD16(+) and CD56(+high)  CD16(-/+low) NK-cells. Conventional CD56(+low) and CD56(+high) NK-cells present in the normal PB do express CKR for inflammatory cytokines, although with different patterns CD56(+low) NK-cells are mainly CXCR1/CXCR2(+) and CXCR3/CCR5(-/+), whereas mostly CD56(+high) NK-cells are CXCR1/CXCR2(-) and CXCR3/CCR5(+). Both NK-cell subsets have variable CXCR4 expression and are CCR4(-) and CCR6(-). The CKR repertoire of the CD56(+low) NK-cells approaches to that of neutrophils, whereas the CKR repertoire of the CD56(+high) NK-cells mimics that of Th1(+) T cells, suggesting that these cells are prepared to migrate into inflamed tissues at different phases of the immune response. In addition, we describe a subpopulation of NK-cells with intermediate levels of CD56 expression, which we named CD56(+int) NK-cells. These NK-cells are CXCR3/CCR5(+), they have intermediate levels of expression of CD16, CD62L, CD94, and CD122, and they are CD57(-) and CD158a(-). In view of their phenotypic features, we hypothesize that they correspond to a transitional stage, between the well-known CD56(+high) and CD56(+low) NK-cells populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GB virus type C (GBV-C) appears to promote a Th1 response and is associated with prolonged survival in HIV-infected people. L. chagasi causes a spectrum of illness that varies from severe visceral leishmaniasis, a disease that in the majority of cases is fatal if not treated, to self resolution of infection and development of positive DTH response that is protective against symptomatic disease. To determine if GBV-C viremia might influence the outcome of Leishmania infection, we characterized GBV-C status in a cohort of subjects residing in a L. chagasi endemic area in Brazil. GBV-C viremia was more prevalent in blood donors from urban than in periurban regions of Natal, Brazil (16% and 7.5% respectively). Evidence of prior GBV-C (anti-E2 antibodies) was detected in 24% and 12%of these groups respectively. Anti-E2 increased with age (p= 0.0121). No difference in GBV-C viremia was found in the DTH+ and VL groups (p= 0.269); however, subjects with visceral leishmaniasis were more likely to have anti-E2 than DTH+ subjects (p=0.0012), and DTH induration was smaller in subjects with E2 antibodies (4.5 mm) compared those without (7.12 mm) (p= 0.002). Furthermore, the size of the Leishmania DTH response was greater in GBV-C viremica subjects (6.8 mm) compared to non-viremic subjects (3.3 mm; p= 0.0054). There findings suggest that GBV-C virus may promote a type 1 immune response that could influence the outcome of Leishmania infection