715 resultados para Texture recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Federmeier and Benjamin (2005) have suggested that semantic encoding for verbal information in the right hemisphere can be more effective when memory demands are higher. However, other studies (Kanske & Kotz, 2007) also suggest that visual word recognition differ in function of emotional valence. In this context, the present study was designed to evaluate the effects of retention level upon recognition memory processes for negative and neutral words. Sample consisted of 15 right-handed undergraduate portuguese students with normal or corrected to normal vision. Portuguese concrete negative and neutral words were selected in accordance to known linguistic capabilities of the right hemisphere. The participants were submitted to a visual half-field word presentation using a continuous recognition memory paradigm. Eye movements were continuously monitored with a Tobii T60 eye-tracker that showed no significant differences in fixations to negative and neutral words. Reaction times in word recognition suggest an overall advantage of negative words in comparison to the neutral words. Further analysis showed faster responses for negative words than for neutral words when were recognised at longer retention intervals for left-hemisphere encoding. Electrophysiological data through event related potentials revealed larger P2 amplitude over centro-posterior electrode sites for words studied in the left hemifield suggesting a priming effect for right-hemisphere encoding. Overall data suggest different hemispheric memory strategies for the semantic encoding of negative and neutral words.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of multiple sclerosis (MS) on the ability to identify emotional expressions in faces was investigated, and possible associations with patients’ characteristics were explored. 56 non-demented MS patients and 56 healthy subjects (HS) with similar demographic characteristics performed an emotion recognition task (ERT), the Benton Facial Recognition Test (BFRT), and answered the Hospital Anxiety and Depression Scale (HADS). Additionally, MS patients underwent a neurological examination and a comprehensive neuropsychological evaluation. The ERT consisted of 42 pictures of faces (depicting anger, disgust, fear, happiness, sadness, surprise and neutral expressions) from the NimStim set. An iViewX high-speed eye tracker was used to record eye movements during ERT. The fixation times were calculated for two regions of interest (i.e., eyes and rest of the face). No significant differences were found between MS and HC on ERT’s behavioral and oculomotor measures. Bivariate and multiple regression analyses revealed significant associations between ERT’s behavioral performance and demographic, clinical, psychopathological, and cognitive measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different phonetically-balanced 50-word recognition lists were constructed in the Ilocano language. Factors that were considered in the construction of these lists were: phonetic balance, syllable structure, and commonness of words.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the auditory, visual and combined audio-visual recognition of vowels by severely and profoundly hearing impaired children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews a study of a speech discrimination test for young profoundly deaf children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the effectiveness of the recorded books and teaching method developed by Dr. Marie Carbo in the aural habilitation of pre-lingual deaf children with cochlear implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the relationship between consonant duration and recognition of these consanants by listeners with high frequency hearing loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability for individuals with hearing loss to accurately recognize correct versus incorrect verbal responses during traditional word recognition testing across four different listening conditions was assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the development of a highly parameterised 3-D model able to adopt the shapes of a wide variety of different classes of vehicles (cars, vans, buses, etc), and its subsequent specialisation to a generic car class which accounts for most commonly encountered types of car (includng saloon, hatchback and estate cars). An interactive tool has been developed to obtain sample data for vehicles from video images. A PCA description of the manually sampled data provides a deformable model in which a single instance is described as a 6 parameter vector. Both the pose and the structure of a car can be recovered by fitting the PCA model to an image. The recovered description is sufficiently accurate to discriminate between vehicle sub-classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenne L. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inferences consistent with “recognition-based” decision-making may be drawn for various reasons other than recognition alone. We demonstrate that, for 2-alternative forced-choice decision tasks, less-is-more effects (reduced performance with additional learning) are not restricted to recognition-based inference but can also be seen in circumstances where inference is knowledge-based but item knowledge is limited. One reason why such effects may not be observed more widely is the dependence of the effect on specific values for the validity of recognition and knowledge cues. We show that both recognition and knowledge validity may vary as a function of the number of items recognized. The implications of these findings for the special nature of recognition information, and for the investigation of recognition-based inference, are discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne scanning laser altimetry (LiDAR) is an important new data source for river flood modelling. LiDAR can give dense and accurate DTMs of floodplains for use as model bathymetry. Spatial resolutions of 0.5m or less are possible, with a height accuracy of 0.15m. LiDAR gives a Digital Surface Model (DSM), so vegetation removal software (e.g. TERRASCAN) must be used to obtain a DTM. An example used to illustrate the current state of the art will be the LiDAR data provided by the EA, which has been processed by their in-house software to convert the raw data to a ground DTM and separate vegetation height map. Their method distinguishes trees from buildings on the basis of object size. EA data products include the DTM with or without buildings removed, a vegetation height map, a DTM with bridges removed, etc. Most vegetation removal software ignores short vegetation less than say 1m high. We have attempted to extend vegetation height measurement to short vegetation using local height texture. Typically most of a floodplain may be covered in such vegetation. The idea is to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This obviates the need to calibrate a global floodplain friction coefficient. It’s not clear at present if the method is useful, but it’s worth testing further. The LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is a low pass filtering operation, in which objects of high spatial frequency such as buildings, river embankments and walls may be incorrectly classed as vegetation. The problem is particularly acute in urban areas. A solution may be to apply pattern recognition techniques to LiDAR height data fused with other data types such as LiDAR intensity or multispectral CASI data. We are attempting to use digital map data (Mastermap structured topography data) to help to distinguish buildings from trees, and roads from areas of short vegetation. The problems involved in doing this will be discussed. A related problem of how best to merge historic river cross-section data with a LiDAR DTM will also be considered. LiDAR data may also be used to help generate a finite element mesh. In rural area we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees, so that e.g. hedge elements can be assigned higher friction coefficients than those in adjacent fields. We are attempting to extend this approach to urban area, so that the mesh is decomposed in the vicinity of buildings, roads, etc as well as trees and hedges. A dominant points algorithm is used to identify points of high curvature on a building or road, which act as initial nodes in the meshing process. A difficulty is that the resulting mesh may contain a very large number of nodes. However, the mesh generated may be useful to allow a high resolution FE model to act as a benchmark for a more practical lower resolution model. A further problem discussed will be how best to exploit data redundancy due to the high resolution of the LiDAR compared to that of a typical flood model. Problems occur if features have dimensions smaller than the model cell size e.g. for a 5m-wide embankment within a raster grid model with 15m cell size, the maximum height of the embankment locally could be assigned to each cell covering the embankment. But how could a 5m-wide ditch be represented? Again, this redundancy has been exploited to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within finite elements at the waterline.