507 resultados para TEOREMA DE PITAGORAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconhecendo, a partir da constatação empírica, a multiplicidade de escolhas de crenças no Mundo e em particular na periferia urbana paulistana, reconhecemos, também, a emergência criativa de novas possibilidades de crer e não crer. Tal amplitude não apenas aponta para o crer (segundo as ofertas de um sem número de religiões) e o não crer (ateu e agnóstico), mas para uma escolha que poderia vir a ser silenciada e esquecida, neste binômio arcaico e obsoleto, quando alguém se dá à liberdade crer sem ter religião. Reconhecer interessadamente os sem-religião nas periferias urbanas paulistanas é dar-se conta das violências a que estes indivíduos estão submetidos: violência econômica, violência da cidadania (vulnerabilidade) e proveniente da armas (grupos x Estado). Tanto quanto a violência do esquecimento e silenciamento. A concomitância espaço-temporal dos sem-religião nas periferias, levou-nos buscar referências em teorias de secularização e de laicidade, e, a partir destas, traçar uma história do poder violento, cuja pretensão é a inelutabilidade, enquanto suas fissuras são abertas em espaços de resistências. A história da legitimação do poder que se quer único, soberano, de caráter universal, enquanto fragmenta a sociedade em indivíduos atomizados, fragilizando vínculos horizontais, e a dos surgimentos de resistências não violentas questionadoras da totalidade trágica, ao reconhecer a liberdade de ser com autonomia, enquanto se volta para a produção de partilha de bens comuns. Propomos reconhecer a igual liberdade de ser (expressa na crença da filiação divina) e de partilhar o bem comum em reconhecimentos mútuos (expressa pela ação social), uma expressão de resistência não violenta ao poder que requer a igual abdicação da liberdade pela via da fragmentação individualizante e submissão inquestionável à ordem totalizante. Os sem-religião nas periferias urbanas, nossos contemporâneos, partilhariam uma tal resistência, ao longo da história, com as melissas gregas, os profetas messiânicos hebreus, os hereges cristãos e os ateus modernos, cuja pretensão não é o poder, mas a partilha igual da liberdade e dos bens comuns. Estes laicos, de fato, seriam agentes de resistências de reconhecimento mútuos, em espaços de multiplicidade crescente, ao poder violento real na história.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O método dos elementos finitos é o método numérico mais difundido na análise de estruturas. Ao longo das últimas décadas foram formulados inúmeros elementos finitos para análise de cascas e placas. As formulações de elementos finitos lidam bem com o campo de deslocamentos, mas geralmente faltam testes que possam validar os resultados obtidos para o campo das tensões. Este trabalho analisa o elemento finito T6-3i, um elemento finito triangular de seis nós proposto dentro de uma formulação geometricamente exata, em relação aos seus resultados de tensões, comparando-os com as teorias analíticas de placas, resultados de tabelas para o cálculo de momentos em placas retangulares e do ANSYSr, um software comercial para análise estrutural, mostrando que o T6-3i pode apresentar resultados insatisfatórios. Na segunda parte deste trabalho, as potencialidades do T6-3i são expandidas, sendo proposta uma formulação dinâmica para análise não linear de cascas. Utiliza-se um modelo Lagrangiano atualizado e a forma fraca é obtida do Teorema dos Trabalhos Virtuais. São feitas simulações numéricas da deformação de domos finos que apresentam vários snap-throughs e snap-backs, incluindo domos com vincos curvos, mostrando a robustez, simplicidade e versatilidade do elemento na sua formulação e na geração das malhas não estruturadas necessárias para as simulações.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apuntes en formato html que incluyen los siguientes temas de la parte de simulación en la asignatura «simulación y optimización de procesos químicos» TEMA 1. Introducción 1.1 Introducción. 1.2 Desarrollo histórico de la simulación de procesos. Relación entre simulación optimización y síntesis de procesos. 1.3 Tipos de simuladores: Modular secuencial. Modular simultáneo. Basada en ecuaciones. TEMA 2. Simulación Modular Secuencial 2.1 Descomposición de diagramas de flujo (flowsheeting) 2.2 Métodos basados en las matrices booleanas Localización de redes cíclicas máximas. Algoritmo de Sargent y Westerberg. Algoritmo de Tarjan. 2.3 Selección de las corrientes de corte: 2.3.1 Caso general planteamiento como un "set-covering problem" (algoritmo de Pho y Lapidus) 2.3.2 Número mínimo de corrientes de corte (algoritmo de Barkley y Motard) 2.3.3 Conjunto de corrientes de corte no redundante (Algoritmo de Upadhye y Grens) TEMA 3. Simulación Modular Simultánea 3.1 Efecto de las estrategias tipo cuasi Newton sobre la convergencia de los diagramas de flujo. TEMA 4. Simulación Basada en Ecuaciones 4.1 Introducción. Métodos de factorización de matrices dispersas. Métodos a priori y métodos locales. 4.2 Métodos locales: Criterio de Markowitz. 4.3 Métodos a priori: 4.3.1 Triangularización por bloques: a. Base de salida admisible (transversal completo). b. Aplicación de los algoritmos de Sargent y Tarjan a matrices dispersas. c. Reordenación. 4.3.2 Transformación en matriz triangular bordeada. 4.4 Fase numerica. Algoritmo RANKI 4.5 Comparación entre los diferentes sistemas de simulación. Ventajas e Inconvenientes. TEMA 5. Grados de libertad y variables de diseño de un diagrama de flujo 5.1 Teorema de Duhem y regla de las fases 5.2 Grados de libertad de un equipo 5.3 Grados de libertad de un diagrama de flujo 5.4 Elección de las variables de diseño.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem com objetivo abordar o problema de alocação de ativos (análise de portfólio) sob uma ótica Bayesiana. Para isto foi necessário revisar toda a análise teórica do modelo clássico de média-variância e na sequencia identificar suas deficiências que comprometem sua eficácia em casos reais. Curiosamente, sua maior deficiência não esta relacionado com o próprio modelo e sim pelos seus dados de entrada em especial ao retorno esperado calculado com dados históricos. Para superar esta deficiência a abordagem Bayesiana (modelo de Black-Litterman) trata o retorno esperado como uma variável aleatória e na sequência constrói uma distribuição a priori (baseado no modelo de CAPM) e uma distribuição de verossimilhança (baseado na visão de mercado sob a ótica do investidor) para finalmente aplicar o teorema de Bayes tendo como resultado a distribuição a posteriori. O novo valor esperado do retorno, que emerge da distribuição a posteriori, é que substituirá a estimativa anterior do retorno esperado calculado com dados históricos. Os resultados obtidos mostraram que o modelo Bayesiano apresenta resultados conservadores e intuitivos em relação ao modelo clássico de média-variância.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The random walk models with temporal correlation (i.e. memory) are of interest in the study of anomalous diffusion phenomena. The random walk and its generalizations are of prominent place in the characterization of various physical, chemical and biological phenomena. The temporal correlation is an essential feature in anomalous diffusion models. These temporal long-range correlation models can be called non-Markovian models, otherwise, the short-range time correlation counterparts are Markovian ones. Within this context, we reviewed the existing models with temporal correlation, i.e. entire memory, the elephant walk model, or partial memory, alzheimer walk model and walk model with a gaussian memory with profile. It is noticed that these models shows superdiffusion with a Hurst exponent H > 1/2. We study in this work a superdiffusive random walk model with exponentially decaying memory. This seems to be a self-contradictory statement, since it is well known that random walks with exponentially decaying temporal correlations can be approximated arbitrarily well by Markov processes and that central limit theorems prohibit superdiffusion for Markovian walks with finite variance of step sizes. The solution to the apparent paradox is that the model is genuinely non-Markovian, due to a time-dependent decay constant associated with the exponential behavior. In the end, we discuss ideas for future investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this investigation is to propose the notion of uniform and strong primeness in fuzzy environment. First, it is proposed and investigated the concept of fuzzy strongly prime and fuzzy uniformly strongly prime ideal. As an additional tool, the concept of t/m systems for fuzzy environment gives an alternative way to deal with primeness in fuzzy. Second, a fuzzy version of correspondence theorem and the radical of a fuzzy ideal are proposed. Finally, it is proposed a new concept of prime ideal for Quantales which enable us to deal with primeness in a noncommutative setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this investigation is to propose the notion of uniform and strong primeness in fuzzy environment. First, it is proposed and investigated the concept of fuzzy strongly prime and fuzzy uniformly strongly prime ideal. As an additional tool, the concept of t/m systems for fuzzy environment gives an alternative way to deal with primeness in fuzzy. Second, a fuzzy version of correspondence theorem and the radical of a fuzzy ideal are proposed. Finally, it is proposed a new concept of prime ideal for Quantales which enable us to deal with primeness in a noncommutative setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suszko’s Thesis is a philosophical claim regarding the nature of many-valuedness. It was formulated by the Polish logician Roman Suszko during the middle 70s and states the existence of “only but two truth values”. The thesis is a reaction against the notion of many-valuedness conceived by Jan Łukasiewicz. Reputed as one of the modern founders of many-valued logics, Łukasiewicz considered a third undetermined value in addition to the traditional Fregean values of Truth and Falsehood. For Łukasiewicz, his third value could be seen as a step beyond the Aristotelian dichotomy of Being and non-Being. According to Suszko, Łukasiewicz’s ideas rested on a confusion between algebraic values (what sentences describe/denote) and logical values (truth and falsity). Thus, Łukasiewicz’s third undetermined value is no more than an algebraic value, a possible denotation for a sentence, but not a genuine logical value. Suszko’s Thesis is endorsed by a formal result baptized as Suszko’s Reduction, a theorem that states every Tarskian logic may be characterized by a two-valued semantics. The present study is intended as a thorough investigation of Suszko’s thesis and its implications. The first part is devoted to the historical roots of many-valuedness and introduce Suszko’s main motivations in formulating the double character of truth-values by drawing the distinction in between algebraic and logical values. The second part explores Suszko’s Reduction and presents the developments achieved from it; the properties of two-valued semantics in comparison to many-valued semantics are also explored and discussed. Last but not least, the third part investigates the notion of logical values in the context of non-Tarskian notions of entailment; the meaning of Suszko’s thesis within such frameworks is also discussed. Moreover, the philosophical foundations for non-Tarskian notions of entailment are explored in the light of recent debates concerning logical pluralism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the numerical analysis of nonlinear trusses summited to thermomechanical actions with Finite Element Method (FEM). The proposed formulation is so-called positional FEM and it is based on the minimum potential energy theorem written according to nodal positions, instead of displacements. The study herein presented considers the effects of geometric and material nonlinearities. Related to dynamic problems, a comparison between different time integration algorithms is performed. The formulation is extended to impact problems between trusses and rigid wall, where the nodal positions are constrained considering nullpenetration condition. In addition, it is presented a thermodynamically consistent formulation, based on the first and second law of thermodynamics and the Helmholtz free-energy for analyzing dynamic problems of truss structures with thermoelastic and thermoplastic behavior. The numerical results of the proposed formulation are compared with examples found in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

la tesi tratta alcuni risultati e applicazioni relative alla teoria delle azioni di gruppi su insiemi finiti, come l'equazione delle classi e il teorema di Cauchy. Infine illustra l'uso di tali risultati nella rappresentazione tramite permutazioni.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scopo di questo elaborato è affrontare lo studio di luoghi geometrici piani partendo dagli esempi più semplici che gli studenti incontrano nel loro percorso scolastico, per poi passare a studiare alcune curve celebri che sono definite come luoghi geometrici. Le curve nell'elaborato vengono disegnate con l'ausilio di Geogebra, con il quale sono state preparate delle animazioni da mostrare agli studenti. Di alcuni luoghi si forniscono dapprima le equazioni parametriche e successivamente, attraverso il teorema di eliminazione e il software Singular, viene ricavata l'equazione cartesiana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesi è suddivisa in due parti: nella prima parte illustriamo le definizioni e i relativi risultati della teoria delle tabelle di Young, introdotte per la prima volta nel 1900 da Alfred Young; mentre, nella seconda parte, diamo la nozione di numeri Euleriani e di Polinomi Euleriani. Nel primo capitolo abbiamo introdotto i concetti di diagramma di Young e di tabelle di Young standard. Inoltre, abbiamo fornito la formula degli uncini per contare le tabelle di Young della stessa forma. Il primo capitolo è focalizzato sul teorema di Robinson-Schensted, che stabilisce una corrispondenza biunivoca tra le permutazioni di Sn e le coppie di tabelle di Young standard della stessa forma. Ne deriva un'importante conseguenza che consiste nel poter trovare in modo efficiente la massima sottosequenza crescente di una permutazione. Una volta definite le operazioni di evacuazione e "le jeu de taquin" relative alle tabelle di Young, illustriamo una serie di risultati riferibili alla corrispondenza biunivoca R-S che variano in base alla permutazione che prendiamo in considerazione. In particolare, enunciamo il teorema di simmetria di M.P.Schüztenberger, che dimostriamo attraverso la costruzione geometrica di Viennot. Nel secondo capitolo, dopo aver dato la definizione di discesa di una permutazione, descriviamo altre conseguenze della corrispondenza biunivoca R-S: vediamo così che esiste una relazione tra le discese di una permutazione e la coppia di tabelle di Young associata. Abbiamo trattato approfonditamente i numeri Euleriani, indicati con A(n,k) = ]{σ ∈ Sn;d(σ) = k}, dove d(σ) indica il numero di discese di una permutazione. Descriviamo le loro proprietà e simmetrie e vediamo che sono i coefficienti di particolari polinomi, detti Polinomi Euleriani. Infine, attraverso la nozione di eccedenza di una permutazione e la descrizione della mappa di Foata arriviamo a dimostrare un importante risultato: A(n,k) conta anche il numero di permutazioni di Sn con k eccedenze.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi riportiamo le definizioni ed i risultati principali relativi alla corrispondenza tra le successioni di polinomi di tipo binomiale (particolari basi dello spazio dei polinomi a coefficienti reali) e gli operatori delta, cioè operatori lineari sullo spazio dei polinomi che commutano con gli operatori di traslazione e il cui nucleo è costituito dai polinomi costanti. Nel capitolo 1 richiamiamo i concetti fondamentali sull'algebra delle serie formali e definiamo l'algebra degli operatori lineari invarianti per traslazione, dimostrando in particolare l'isomorfismo tra queste algebre. Nel capitolo 2, dopo aver dimostrato l'unicità della successione di base relativa ad un operatore delta, ricaviamo come esempio le successioni di base di tre operatori delta, che useremo durante tutto il capitolo: l'operatore derivata, l'operatore di differenza in avanti e l'operatore di differenza all'indietro. Arriviamo quindi a dimostrare un importante risultato, il Primo Teorema di Sviluppo, in cui facciamo vedere come le potenze di un operatore delta siano una base per l'algebra degli operatori invarianti per traslazione. Introducendo poi le successioni di Sheffer, possiamo dimostrare anche il Secondo Teorema di Sviluppo in cui esplicitiamo l'azione di un operatore invariante per traslazione su un polinomio, tramite un operatore delta fissato e una sua successione di Sheffer. Nell'ultima parte della tesi presentiamo i formalismi e alcune semplici operazioni del calcolo umbrale, che useremo per determinare le cosiddette costanti di connessione, ovvero le costanti che definiscono lo sviluppo di una successione binomiale in funzione di un'altra successione binomiale usata come base dello spazio dei polinomi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recentemente sono stati valutati come fisicamente consistenti diversi modelli non-hermitiani sia in meccanica quantistica che in teoria dei campi. La classe dei modelli pseudo-hermitiani, infatti, si adatta ad essere usata per la descrizione di sistemi fisici dal momento che, attraverso un opportuno operatore metrico, risulta possibile ristabilire una struttura hermitiana ed unitaria. I sistemi PT-simmetrici, poi, sono una categoria particolarmente studiata in letteratura. Gli esempi riportati sembrano suggerire che anche le cosiddette teorie conformi non-unitarie appartengano alla categoria dei modelli PT-simmetrici, e possano pertanto adattarsi alla descrizione di fenomeni fisici. In particolare, si tenta qui la costruzione di determinate lagrangiane Ginzburg-Landau per alcuni modelli minimali non-unitari, sulla base delle identificazioni esistenti per quanto riguarda i modelli minimali unitari. Infine, si suggerisce di estendere il dominio del noto teorema c alla classe delle teorie di campo PT-simmetriche, e si propongono alcune linee per una possibile dimostrazione dell'ipotizzato teorema c_{eff}.