976 resultados para Suites (Piano, 4 hands)
Resumo:
The purpose of this study was to compare the effectiveness of three different recovery modalities - active (ACT), passive (PAS) and contrast temperature water immersion (CTW) - on the performance of repeated treadmill running, lactate concentration and pH. Fourteen males performed two pairs of treadmill runs to exhaustion at 120% and 90% of peak running speed (PRS) over a 4-hour period. ACT, PAS or CTW was performed for 15-min after the first pair of treadmill runs. ACT consisted of running at 40% PRS, PAS consisted of standing stationary and CTW consisted of alternating between 60-s cold (10°C) and 120-s hot (42°C) water immersion. Run times were converted to time to cover set distance using critical power. Type of recovery modality did not have a significant effect on change in time to cover 400 m (Mean±SD; ACT 2.7±3.6 s, PAS 2.9±4.2 s, CTW 4.2±6.9 s), 1000 m (ACT 2.2±4.0 s, PAS 4.8±8.6 s, CTW 2.1±7.2 s) or 5000 m (ACT 1.4±29.0 s, PAS 16.7±58.5 s, CTW 11.7±33.0 s). Post exercise blood lactate concentration was lower in ACT and CTW compared with PAS. Participants reported an increased perception of recovery in the CTW compared with ACT and PAS. Blood pH was not significantly influenced by recovery modality. Data suggest both ACT and CTW reduce lactate accumulation after high intensity running, but high intensity treadmill running performance is returned to baseline 4-hours after the initial exercise bout regardless of the recovery strategy employed.
Resumo:
The activities introduced here were used in association with a research project in four Year 4 classrooms and are suggested as a motivating way to address several criteria for Measurement and Data in the Australian Curriculum: Mathematics. The activities involve measuring the arm span of one student in a class many times and then of all students once.
Resumo:
Australia is in the process of making the most important change to its health care system since the implementation of Medicare.1 We agree with Cameron and Cooke that there are important lessons for Australia from the implementation of the 4-hour rule in the United Kingdom. As in Robert Zemeckis’s 1985 movie classic, Back to the future, the old question of “If I had the opportunity to do something again, what would I have done differently?” applies. We challenge the assumption that Australia is embarking on something that the UK has recently abandoned. The UK has not actually abandoned the 4-hour rule but expanded it into a suite of eight indicators that include three time-based measures, including total time in the emergency department (ED).
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of kapundaite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Kapundaite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of kapundaite with wardite. The Raman spectrum of kapundaite in the 800–1400 cm−1 spectral range shows two intense bands at 1089 and 1114 cm−1 assigned to the ν1PO43- symmetric stretching vibrations. The observation of two bands provides evidence for the non-equivalence of the phosphate units in the kapundaite structure. The infrared spectrum of kapundaite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 966, 1003 and 1036 cm−1 and are attributed to the ν1PO43- symmetric stretching mode and ν3PO43- antisymmetric stretching mode. Raman bands in the ν4 out of plane bending modes of the PO43- unit support the concept of non-equivalent phosphate units in the kapundaite structure. In the 2600–3800 cm−1 spectral range, Raman bands for kapundaite are found at 2905, 3151, 3311, 3449 and 3530 cm−1. These bands are broad and are assigned to OH stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm−1 and are attributed to water. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of kapundaite to be ascertained and compared with that of other phosphate minerals.
Resumo:
For decades Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) have used computers to monitor and control physical processes in many critical industries, including electricity generation, gas pipelines, water distribution, waste treatment, communications and transportation. Increasingly these systems are interconnected with corporate networks via the Internet, making them vulnerable and exposed to the same risks as those experiencing cyber-attacks on a conventional network. Very often SCADA networks services are viewed as a specialty subject, more relevant to engineers than standard IT personnel. Educators from two Australian universities have recognised these cultural issues and highlighted the gap between specialists with SCADA systems engineering skills and the specialists in network security with IT background. This paper describes a learning approach designed to help students to bridge this gap, gain theoretical knowledge of SCADA systems' vulnerabilities to cyber-attacks via experiential learning and acquire practical skills through actively participating in hands-on exercises.
Resumo:
The Internet of Things facilitates the identification, digitization, and control of physical objects. However, it is the availability of cost effective sensors, mobile smart devices, scalable cloud infrastructure, and advanced analytics that have consumerized the Internet of Things. The accessibility of digital representations of things has transformative potential and provides entire new affordances for organizations and their ecosystems across most industries.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of minyulite KAl2(OH,F)(PO4)2⋅4(H2O). Single crystals of a pure phase from a Brazilian pegmatite were used. Minyulite belongs to the orthorhombic crystal system. This indicates that it has three axes of unequal length, yet all are perpendicular to each other. The infrared and Raman spectroscopy were applied to compare the structure of minyulite with wardite. The reason for the comparison is that both are Al containing phosphate minerals. The Raman spectrum of minyulite shows an intense band at 1012 cm−1 assigned to the ν1PO43- symmetric stretching vibrations. A series of low intensity Raman bands at 1047, 1077, 1091 and 1105 cm−1 are assigned to the ν3PO43- antisymmetric stretching modes. The Raman bands at 1136, 1155, 1176 and 1190 cm−1 are assigned to AlOH deformation modes. The infrared band at 1014 cm−1 is ascribed to the PO43- ν1 symmetric stretching vibrational mode. The infrared bands at 1049, 1071, 1091 and 1123 cm−1 are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared bands at 1123, 1146 and 1157 cm−1 are attributed to AlOH deformation modes. Raman bands at 575, 592, 606 and 628 cm−1 are assigned to the ν4 out of plane bending modes of the PO43- unit. In the 2600–3800 cm−1 spectral range, Raman bands for minyulite are found at 3661, 3669 and 3692 cm−1 are assigned to AlOH/AlF stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm−1. Raman bands at 3225, 3324 cm−1 are assigned to water stretching vibrations. A comparison is made with the vibrational spectra of wardite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of minyulite to be ascertained and compared with that of other phosphate minerals.
Resumo:
Kallikrein-related peptidases, in particular KLK4, 5, 6 and 7 (4-7), often have elevated expression levels in ovarian cancer. In OV-MZ-6 ovarian cancer cells, combined expression of KLK4-7 reduces cell adhesion and increases cell invasion and resistance to paclitaxel. The present work investigates how KLK4-7 shape the secreted proteome ("secretome") and proteolytic profile ("degradome") of ovarian cancer cells. The secretome comparison consistently identified >900 proteins in three replicate analyses. Expression of KLK4-7 predominantly affected the abundance of proteins involved in cell-cell communication. Among others, this includes increased levels of transforming growth factor β-1 (TGFβ-1). KLK4-7 co-transfected OV-MZ-6 cells share prominent features of elevated TGFβ-1 signaling, including increased abundance of neural cell adhesion molecule L1 (L1CAM). Augmented levels of TGFβ-1 and L1CAM upon expression of KLK4-7 were corroborated in vivo by an ovarian cancer xenograft model. The degradomic analysis showed that KLK4-7 expression mostly affected cleavage sites C-terminal to arginine, corresponding to the preference of kallikreins 4, 5 and 6. Putative kallikrein substrates include chemokines, such as growth differentiation factor 15 (GDF 15) and macrophage migration inhibitory factor (MIF). Proteolytic maturation of TGFβ-1 was also elevated. KLK4-7 have a pronounced, yet non-degrading impact on the secreted proteome, with a strong association between these proteases and TGFβ-1 signaling in tumor biology. © 2013 Federation of European Biochemical Societies.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of whiteite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. The infrared and Raman spectroscopy were applied to compare the molecular structure of whiteite with that of other phosphate minerals. The Raman spectrum of whiteite shows an intense band at 972 cm-1 assigned to the m1 PO3- 4 symmetric stretching vibrations. The low intensity Raman bands at 1076 and 1173 cm-1 are assigned to the m3 PO3- 4 antisymmetric stretching modes. The Raman bands at 1266, 1334 and 1368 cm-1 are assigned to AlOH deformation modes. The infrared band at 967 cm-1 is ascribed to the PO3- 4 m1 symmetric stretching vibrational mode. The infrared bands at 1024, 1072, 1089 and 1126 cm-1 are attributed to the PO3-4 m3 antisymmetric stretching vibrations. Raman bands at 553, 571 and 586 cm-1 are assigned to the m4 out of plane bending modes of the PO3- 4 unit. Raman bands at 432, 457, 479 and 500 cm-1 are attributed to the m2 PO4 and H2PO4 bending modes. In the 2600 to 3800 cm-1 spectral range, Raman bands for whiteite are found 3426, 3496 and 3552 cm-1 are assigned to AlOH stretching vibrations. Broad infrared bands are also found at 3186 cm-1. Raman bands at 2939 and 3220 cm-1 are assigned to water stretching vibrations. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of whiteite to be ascertained and compared with that of other phosphate minerals.
Resumo:
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.
Resumo:
It was widely anticipated that after the introduction of silicone hydrogel lenses, the risk of microbial keratitis would be lower than with hydrogel lenses because of the reduction in hypoxic effects on the corneal epithelium. Large-scale epidemiological studies have confirmed that the absolute and relative risk of microbial keratitis is unchanged with overnight use of silicone hydrogel materials. The key findings include the following: (1) The risk of infection with 30 nights of silicone hydrogel use is equivalent to 6 nights of hydrogel extended wear; (2) Occasional overnight lens use is associated with a greater risk than daily lens use; (3) The rate of vision loss due to corneal infection with silicone hydrogel contact lenses is similar to that seen in hydrogel lenses; (4) The spectrum of causative organisms is similar to that seen in hydrogel lenses, and the material type does not impact the corneal location of presumed microbial keratitis; and (5) Modifiable risk factors for infection include overnight lens use, the degree of exposure, failing to wash hands before lens handling, and storage case hygiene practice. The lack of change in the absolute risk of disease would suggest that exposure to large number of pathogenic organisms can overcome any advantages obtained from eliminating the hypoxic effects of contact lenses. Epidemiological studies remain important in the assessment of new materials and modalities. Consideration of an early adopter effect with studies involving new materials and modalities and further investigation of the impact of second-generation silicone hydrogel materials is warranted.
Resumo:
X-ray diffraction structure functions for water flowing in a 1.5 mm diameter siphon in the temperature range 4 – 63 °C were obtained using a 20 keV beam at the Australian Synchrotron. These functions were compared with structure functions obtained at the Advanced Light Source for a 0.5 mm thick sample of water in the temperature range 1 – 77 °C irradiated with an 11 keV beam. The two sets of structure functions are similar, but there are subtle differences in the shape and relative position of the two functions suggesting a possible differences between the structure of bulk and siphon water. In addition, the first structural peak (Q0) for water in a siphon, showed evidence of a step-wise increase in Q0 with increasing temperature rather than a smoothly varying increase. More experiments are required to investigate this apparent difference.
Resumo:
"The authors agree with the statements made by Mills and Christy on the study of kapundaite [1]. These authors are correct and have removed any confusion about the origin of the sample kapundaite. The authors (Frost et al.) confirm the sample of kapundaite studied in this work is from the Tom‘s quarry, Australia and can be considered a type material. The authors do not accept the statements by Mills and Christy on “type minerals”. The sample of kapundaite from the Australian source is from the collection of the Geology Department of the Federal University of Ouro Preto, Minas Gerais, Brazil with sample code SAC-111. At least if our mineral sample is not a co-type mineral, our sample is from the same origin as the type mineral. Samples..."--publisher website.