992 resultados para Spin order
Resumo:
The large size, high trophic level and wide distribution of Hexanchiformes (cow and frilled sharks) should position this order as important apex predators in coastal and deep-water ecosystems. This review synthesizes available information on Hexanchiformes, including information not yet published, with the purpose of evaluating their conservation status and assessing their ecological roles in the dynamics of marine ecosystems. Comprising six species, this group has a wide global distribution, with members occurring from shallow coastal areas to depths of c. 2500 m. The limited information available on their reproductive biology suggests that they could be vulnerable to overexploitation (e.g. small litter sizes for most species and suspected long gestation periods). Most of the fishing pressure exerted on Hexanchiformes is in the form of commercial by-catch or recreational fishing. Comprehensive stock and impact assessments are unavailable for most species in most regions due to limited information on life history and catch and abundance time series. When hexanchiform species have been commercially harvested, however, they have been unable to sustain targeted fisheries for long periods. The potentially high vulnerability to intense fishing pressure warrants a conservative exploitation of this order until thorough quantitative assessments are conducted. At least some species have been shown to be significant apex predators in the systems they inhabit. Should Hexanchiformes be removed from coastal and deep-water systems, the lack of sympatric shark species that share the same resources suggests no other species would be capable of fulfilling their apex predator role in the short term. This has potential ecosystem consequences such as meso-predator release or trophic cascades. This review proposes some hypotheses on the ecology of Hexanchiformes and their role in ecosystem dynamics, highlighting the areas where critical information is required to stimulate research directions.
Resumo:
A first order optical system is investigated in full generality within the context of wave optics. The problem is reduced to a study of the ray transfer matrices. The simplest such systems correspond to axially symmetric propagation. Realization of such systems by centrally located lenses separated by finite distances is studied. It is shown that, contrary to the commonly held view, the set of first order systems that can be realized using axially symmetric thin lenses exhausts the entire SL(2, R) group; at most three lenses are needed to realize any element of this group. In particular, the inverse of free propagation can be so realized. Among anisotropic systems it is again shown that every element of the lens group Sp(4, R) can be realized using a finite number of thin lenses.
Resumo:
The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.
Resumo:
Abstract is not available.
Resumo:
Microwave treated water soluble and amide functionalized single walled carbon nanotubes have been investigated using femtosecond degenerate pump-probe and nonlinear transmission experiments. The time resolved differential transmission using 75 femtosecond pulse with the central wavelength of 790 nm shows a bi-exponential ultrafast photo-bleaching with time constants of 160 fs (130 fs) and 920 fs (300 fs) for water soluble (amide functionalized) nanotubes. Open and closed aperture z-scans show saturation absorption and positive (negative) nonlinear refraction for water soluble (amide functionalized) nanotubes. Two photon absorption coefficient, beta(0) similar to 250 cm/GW (650 cm/GW) and nonlinear index, gamma similar to 15 cm(2)/pW (-30 cm(2)/pW) are obtained from the theoretical fit in the saturation limit to the data for two types of nanotubes.
Crystal growth and characterization of two-leg spin ladder compounds: Sr14Cu24O41 and Sr2Ca12Cu24O41
Resumo:
Single crystals of Sr14−xCaxCu24O41 (x=0 and 12) are grown by the travelling solvent floating zone technique using an image furnace. The grown crystals are characterized for their single crystallinity by the X-ray and Neutron Laue method. The magnetic susceptibility measurements in Sr14Cu24O41 show considerable anisotropy along the main crystallographic axes. Low-temperature specific heat measurement and DC susceptibility measurement in Ca-doped crystal showed antiferromagnetic ordering at 2.8 K at ambient pressure. High-pressure AC susceptibility measurement on Ca-doped crystal showed a sharp superconducting transition at 2 K under 40 kbars. Tc onset reached a maximum value of 9.9 K at 54 kbars. The bulk superconductivity of the sample is confirmed by the high-pressure AC calorimetry with Tc max=9.4 K and TN=5 K at 56 kbars.
Resumo:
TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.
Resumo:
The paper describes a method to determine the integral fringe order associated with a fractional fringe value that is measured using Tardy or other similar compensators. The method makes use of two different wavelengths of light to determine the fractional fringe values. Further, it does not assume the independence of the material fringe constant on the wavelength of light used. From these measured fractional fringe values, the associated integral fringe order is determined. A method to construct a ready-reckoner table is also described which helps to identify the integral fringe order from any two measured fractional fringe values.
Resumo:
This thesis is a study of a rather new logic called dependence logic and its closure under classical negation, team logic. In this thesis, dependence logic is investigated from several aspects. Some rules are presented for quantifier swapping in dependence logic and team logic. Such rules are among the basic tools one must be familiar with in order to gain the required intuition for using the logic for practical purposes. The thesis compares Ehrenfeucht-Fraïssé (EF) games of first order logic and dependence logic and defines a third EF game that characterises a mixed case where first order formulas are measured in the formula rank of dependence logic. The thesis contains detailed proofs of several translations between dependence logic, team logic, second order logic and its existential fragment. Translations are useful for showing relationships between the expressive powers of logics. Also, by inspecting the form of the translated formulas, one can see how an aspect of one logic can be expressed in the other logic. The thesis makes preliminary investigations into proof theory of dependence logic. Attempts focus on finding a complete proof system for a modest yet nontrivial fragment of dependence logic. A key problem is identified and addressed in adapting a known proof system of classical propositional logic to become a proof system for the fragment, namely that the rule of contraction is needed but is unsound in its unrestricted form. A proof system is suggested for the fragment and its completeness conjectured. Finally, the thesis investigates the very foundation of dependence logic. An alternative semantics called 1-semantics is suggested for the syntax of dependence logic. There are several key differences between 1-semantics and other semantics of dependence logic. 1-semantics is derived from first order semantics by a natural type shift. Therefore 1-semantics reflects an established semantics in a coherent manner. Negation in 1-semantics is a semantic operation and satisfies the law of excluded middle. A translation is provided from unrestricted formulas of existential second order logic into 1-semantics. Also game theoretic semantics are considerd in the light of 1-semantics.
Resumo:
We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.
Resumo:
Malli on logiikassa käytetty abstraktio monille matemaattisille objekteille. Esimerkiksi verkot, ryhmät ja metriset avaruudet ovat malleja. Äärellisten mallien teoria on logiikan osa-alue, jossa tarkastellaan logiikkojen, formaalien kielten, ilmaisuvoimaa malleissa, joiden alkioiden lukumäärä on äärellinen. Rajoittuminen äärellisiin malleihin mahdollistaa tulosten soveltamisen teoreettisessa tietojenkäsittelytieteessä, jonka näkökulmasta logiikan kaavoja voidaan ajatella ohjelmina ja äärellisiä malleja niiden syötteinä. Lokaalisuus tarkoittaa logiikan kyvyttömyyttä erottaa toisistaan malleja, joiden paikalliset piirteet vastaavat toisiaan. Väitöskirjassa tarkastellaan useita lokaalisuuden muotoja ja niiden säilymistä logiikkoja yhdistellessä. Kehitettyjä työkaluja apuna käyttäen osoitetaan, että Gaifman- ja Hanf-lokaalisuudeksi kutsuttujen varianttien välissä on lokaalisuuskäsitteiden hierarkia, jonka eri tasot voidaan erottaa toisistaan kasvavaa dimensiota olevissa hiloissa. Toisaalta osoitetaan, että lokaalisuuskäsitteet eivät eroa toisistaan, kun rajoitutaan tarkastelemaan äärellisiä puita. Järjestysinvariantit logiikat ovat kieliä, joissa on käytössä sisäänrakennettu järjestysrelaatio, mutta sitä on käytettävä siten, etteivät kaavojen ilmaisemat asiat riipu valitusta järjestyksestä. Määritelmää voi motivoida tietojenkäsittelyn näkökulmasta: vaikka ohjelman syötteen tietojen järjestyksellä ei olisi odotetun tuloksen kannalta merkitystä, on syöte tietokoneen muistissa aina jossakin järjestyksessä, jota ohjelma voi laskennassaan hyödyntää. Väitöskirjassa tutkitaan minkälaisia lokaalisuuden muotoja järjestysinvariantit ensimmäisen kertaluvun predikaattilogiikan laajennukset yksipaikkaisilla kvanttoreilla voivat toteuttaa. Tuloksia sovelletaan tarkastelemalla, milloin sisäänrakennettu järjestys lisää logiikan ilmaisuvoimaa äärellisissä puissa.