984 resultados para Spatial Process
Resumo:
Most sugarcane breeding programs in Australia use large unreplicated trials to evaluate clones in the early stages of selection. Commercial varieties that are replicated provide a method of local control of soil fertility. Although such methods may be useful in detecting broad trends in the field, variation often occurs on a much smaller scale. Methods such as spatial analysis adjust a plot for variability by using information from immediate neighbours. These techniques are routinely used to analyse cereal data in Australia and have resulted in increased accuracy and precision in the estimates of variety effects. In this paper, spatial analyses in which the variability is decomposed into local, natural, and extraneous components are applied to early selection trials in sugarcane. Interplot competition in cane yield and trend in sugar content were substantial in many of the trials and there were often large differences in the selections between the spatial and current method used by the Bureau of Sugar Experiment Stations. A joint modelling approach for tonnes sugar per hectare in response to fertility trends and interplot competition is recommended.
Resumo:
In computer simulations of smooth dynamical systems, the original phase space is replaced by machine arithmetic, which is a finite set. The resulting spatially discretized dynamical systems do not inherit all functional properties of the original systems, such as surjectivity and existence of absolutely continuous invariant measures. This can lead to computational collapse to fixed points or short cycles. The paper studies loss of such properties in spatial discretizations of dynamical systems induced by unimodal mappings of the unit interval. The problem reduces to studying set-valued negative semitrajectories of the discretized system. As the grid is refined, the asymptotic behavior of the cardinality structure of the semitrajectories follows probabilistic laws corresponding to a branching process. The transition probabilities of this process are explicitly calculated. These results are illustrated by the example of the discretized logistic mapping.
Resumo:
Embryonic development of tendons is in close association with that of cartilage and bone. Although these tissues are derived from mesenchymal progenitor cells which also give rise to muscle and fat, their fates clearly diverse in early embryonic stages, Transcription factors may play pivotal roles in the process of determination and differentiation of tendon cells as well as other cells in the skeletal system. Scleraxis, a basic helix-loop-helix (bHLH) type transcription factor. is expressed in mesenchymal progenitors that later form connective tissues including tendons. Sox9 is an HMG-box containing transcription factor, which is expressed at high levels in chondrocytes. We hypothesized that the two transcription factors regulate the fate of cells that interact with each other at the interface between the two tissues during divergence of their differentiation pathways, To address this point, we investigated scleraxis and Sox9 rnRNA expression during mouse embyogenesis focusing on the coordinated development of tendons and skeletons, In the early stage of mesenchymal tissue development at 10.5 d.p.c., scleraxis and Sox9 transcripts were expressed in the mesenchymal progenitor cells in the appendicular and axial mesenchyme. At 11.5 d.p.c.. scleraxis transcripts were observed in the mesenchymal tissue surrounding skeletal primordia which express Sox9. From this stage, scleraxis expression was closely associated with, but distinct from, formation of skeletal primordia, At 13.5 d.p.c., scleraxis was expressed broadly in the interface between muscle and skeletal primordia while Sox9 expression is confined within the early skeletal primordia. Then. at 15.5 d.p.c., scleraxis transcripts were more restricted to tendons. These observations revealed the presence of temporal and spatial association of scleraxis expression during embryonic development of tendon precursor cells in close association with that of So,0 expression in chondrogenic cells in skeletal tissues. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In Australian universities the discipline of Geography has been the pace-setter in forging cross-disciplinary links to create multidisciplinary departments and schools, well ahead of other disciplines in humanities, social sciences and sciences, and also to a greater extent than in comparable overseas university systems. Details on all cross-disciplinary links and on immediate outcomes have been obtained by surveys of all heads of departments/schools with undergraduate Geography programs. These programs have traced their own distinctive trajectories, with ramifying links to cognate fields of enquiry, achieved through mergers, transfers, internal initiatives and, more recently, faculty-wide restructuring to create supradisciplinary schools. Geography's `exceptionalism' has proved short-lived. Disciplinary flux is now extending more widely within Australian universities, driven by a variety of internal and external forces, including: intellectual questioning and new ways of constituting knowledge; technological change and the information revolution; the growth of instrumentalism and credentialism, and managerialism and entre-preneurial imperatives; reinforced by a powerful budgetary squeeze. Geographers are proving highly adaptive in pursuit of cross-disciplinary connections, offering analytical tools and selected disciplinary insights useful to non-geographers. However, this may be at cost to undergraduate programs focussing on Geography's intellectual core. Whereas formerly Geography had high reproductive capacity but low instrumental value it may now be in a phase of enhanced utility but perilously low reproductive capacity.
Resumo:
Spatial and temporal variability in wheat production in Australia is dominated by rainfall occurrence. The length of historical production records is inadequate, however, to analyse spatial and temporal patterns conclusively. In this study we used modelling and simulation to identify key spatial patterns in Australian wheat yield, identify groups of years in the historical record in which spatial patterns were similar, and examine association of those wheat yield year groups with indicators of the El Nino Southern Oscillation (ENSO). A simple stress index model was trained on 19 years of Australian Bureau of Statistics shire yield data (1975-93). The model was then used to simulate shire yield from 1901 to 1999 for all wheat-producing shires. Principal components analysis was used to determine the dominating spatial relationships in wheat yield among shires. Six major components of spatial variability were found. Five of these represented near spatially independent zones across the Australian wheatbelt that demonstrated coherent temporal (annual) variability in wheat yield. A second orthogonal component was required to explain the temporal variation in New South Wales. The principal component scores were used to identify high- and low-yielding years in each zone. Year type groupings identified in this way were tested for association with indicators of ENSO. Significant associations were found for all zones in the Australian wheatbelt. Associations were as strong or stronger when ENSO indicators preceding the wheat season (April-May phases of the Southern Oscillation Index) were used rather than indicators based on classification during the wheat season. Although this association suggests an obvious role for seasonal climate forecasting in national wheat crop forecasting, the discriminatory power of the ENSO indicators, although significant, was not strong. By examining the historical years forming the wheat yield analog sets within each zone, it may be possible to identify novel climate system or ocean-atmosphere features that may be causal and, hence, most useful in improving seasonal forecasting schemes.
Resumo:
A technique based on laser light diffraction is shown to be successful in collecting on-line experimental data. Time series of floc size distributions (FSD) under different shear rates (G) and calcium additions were collected. The steady state mass mean diameter decreased with increasing shear rate G and increased when calcium additions exceeded 8 mg/l. A so-called population balance model (PBM) was used to describe the experimental data, This kind of model describes both aggregation and breakage through birth and death terms. A discretised PBM was used since analytical solutions of the integro-partial differential equations are non-existing. Despite the complexity of the model, only 2 parameters need to be estimated: the aggregation rate and the breakage rate. The model seems, however, to lack flexibility. Also, the description of the floc size distribution (FSD) in time is not accurate.
Resumo:
We used a network of 20 carbon dioxide- and octenol-supplemented light traps to sample adult mosquitoes throughout Russell Island in southern Moreton Bay, south-east Queensland. Between February and April 2001, an estimated 1365 564 adult female mosquitoes were collected. In contrast to an average catch of 9754 female mosquitoes per trap night on Russell Island, reference traps set on Macleay Island and on the mainland returned average catches of 3172 and 222, respectively. On Russell Island, Ochlerotatus vigilax (Skuse), Coquillettidia linealis (Skuse), Culex annulirostris Skuse and Verrallina funerea (Theobald), known or suspected vectors of Ross River (RR) and/or Barmah Forest (BF) viruses, comprised 89.6% of the 25 taxa collected. When the spatial distributions of the above species were mapped and analysed using local spatial statistics, all were found to be present in highest numbers towards the southern end of the island during most of the 7 weeks. This indicated the presence of more suitable adult harbourage sites and/or suboptimal larval control efficacy. As immature stages and the breeding habitat of Cq. linealis are as yet undescribed, this species in particular presents a considerable impediment to proposed development scenarios. The method presented here of mapping the numbers of mosquitoes throughout a local government area allows specific areas that have high vector numbers to be defined.
Resumo:
Fibroblast growth factor receptors (FGFRs) undergo highly regulated spatial and temporal changes of expression during development. This study describes the use of quantitative reverse transcriptase-polymerase chain reaction and immunochemistry to assess the changes in expression of FGFR4 as compared to its FGFR4-17a and -17b isoforms in mouse tissues, from early embryogenesis through to adulthood. Compared to FGFR4, the expression of the isoforms is more restricted at all developmental stages tested. The reverse transcriptase-polymerase chain reaction demonstrated that FGFR4 is expressed in more tissue types than either of its isoforms: it was found predominantly in lung, liver, brain, skeletal muscle and kidney, whereas the FGFR4-17a form was detected in lung and skeletal muscle, and the FGFR4-17b form only in lung, liver, skeletal muscle and kidney. Immunohistochemistry confirmed strong FGFR4-17b expression in the postnatal lung. When combined, the results suggest that FGFR4 variants play important roles particularly in lung and skeletal muscle development.