991 resultados para Situation models
Resumo:
In this thesis a semi-automated cell analysis system is described through image processing. To achieve this, an image processing algorithm was studied in order to segment cells in a semi-automatic way. The main goal of this analysis is to increase the performance of cell image segmentation process, without affecting the results in a significant way. Even though, a totally manual system has the ability of producing the best results, it has the disadvantage of taking too long and being repetitive, when a large number of images need to be processed. An active contour algorithm was tested in a sequence of images taken by a microscope. This algorithm, more commonly known as snakes, allowed the user to define an initial region in which the cell was incorporated. Then, the algorithm would run several times, making the initial region contours to converge to the cell boundaries. With the final contour, it was possible to extract region properties and produce statistical data. This data allowed to say that this algorithm produces similar results to a purely manual system but at a faster rate. On the other hand, it is slower than a purely automatic way but it allows the user to adjust the contour, making it more versatile and tolerant to image variations.
Resumo:
Theoretical epidemiology aims to understand the dynamics of diseases in populations and communities. Biological and behavioral processes are abstracted into mathematical formulations which aim to reproduce epidemiological observations. In this thesis a new system for the self-reporting of syndromic data — Influenzanet — is introduced and assessed. The system is currently being extended to address greater challenges of monitoring the health and well-being of tropical communities.(...)
Resumo:
"Amyotrophic Lateral Sclerosis (ALS) is the most severe and common adult onset disorder that affects motor neurons in the spinal cord, brainstem and cortex, resulting in progressive weakness and death from respiratory failure within two to five years of symptoms onset(...)
Resumo:
Nowadays, a significant increase on the demand for interoperable systems for exchanging data in business collaborative environments has been noticed. Consequently, cooperation agreements between each of the involved enterprises have been brought to light. However, due to the fact that even in a same community or domain, there is a big variety of knowledge representation not semantically coincident, which embodies the existence of interoperability problems in the enterprises information systems that need to be addressed. Moreover, in relation to this, most organizations face other problems about their information systems, as: 1) domain knowledge not being easily accessible by all the stakeholders (even intra-enterprise); 2) domain knowledge not being represented in a standard format; 3) and even if it is available in a standard format, it is not supported by semantic annotations or described using a common and understandable lexicon. This dissertation proposes an approach for the establishment of an enterprise reference lexicon from business models. It addresses the automation in the information models mapping for the reference lexicon construction. It aggregates a formal and conceptual representation of the business domain, with a clear definition of the used lexicon to facilitate an overall understanding by all the involved stakeholders, including non-IT personnel.
Resumo:
The computational power is increasing day by day. Despite that, there are some tasks that are still difficult or even impossible for a computer to perform. For example, while identifying a facial expression is easy for a human, for a computer it is an area in development. To tackle this and similar issues, crowdsourcing has grown as a way to use human computation in a large scale. Crowdsourcing is a novel approach to collect labels in a fast and cheap manner, by sourcing the labels from the crowds. However, these labels lack reliability since annotators are not guaranteed to have any expertise in the field. This fact has led to a new research area where we must create or adapt annotation models to handle these weaklylabeled data. Current techniques explore the annotators’ expertise and the task difficulty as variables that influences labels’ correction. Other specific aspects are also considered by noisy-labels analysis techniques. The main contribution of this thesis is the process to collect reliable crowdsourcing labels for a facial expressions dataset. This process consists in two steps: first, we design our crowdsourcing tasks to collect annotators labels; next, we infer the true label from the collected labels by applying state-of-art crowdsourcing algorithms. At the same time, a facial expression dataset is created, containing 40.000 images and respective labels. At the end, we publish the resulting dataset.
Resumo:
Real-time collaborative editing systems are common nowadays, and their advantages are widely recognized. Examples of such systems include Google Docs, ShareLaTeX, among others. This thesis aims to adopt this paradigm in a software development environment. The OutSystems visual language lends itself very appropriate to this kind of collaboration, since the visual code enables a natural flow of knowledge between developers regarding the developed code. Furthermore, communication and coordination are simplified. This proposal explores the field of collaboration on a very structured and rigid model, where collaboration is made through the copy-modify-merge paradigm, in which a developer gets its own private copy from the shared repository, modifies it in isolation and later uploads his changes to be merged with modifications concurrently produced by other developers. To this end, we designed and implemented an extension to the OutSystems Platform, in order to enable real-time collaborative editing. The solution guarantees consistency among the artefacts distributed across several developers working on the same project. We believe that it is possible to achieve a much more intense collaboration over the same models with a low negative impact on the individual productivity of each developer.
Resumo:
RESUMO - Enquadramento: A Brucelose é uma antropozoonose prevalente no Mundo e é uma das mais negligenciadas. A sua transmissão ao ser humano é directa e indirecta, e acontece por via de contacto com animal infectado, o consumo de leite e seus derivados não pasteurizados e a não observância de uso de equipamentos de protecção individual e colectiva, entre outros factores. O conhecimento da prevalência e incidência da brucelose animal e humana no Namibe, uma província de Angola, é muito escasso sendo poucos os estudos que evidenciam esta doença no seio dos profissionais da pecuária expostos: trabalhadores de matadouros, veterinários e criadores de gado. É assim pertinente, com base em estudos científicos específicos, caracterizar esta situação. Objectivos: Caracterizar os ambientes dos profissionais (matadouro, talhos e salas municipais de abate e explorações); estimar a seroprevalência da brucelose humana em profissionais da pecuária (trabalhadores de matadouros e criadores de gado bovino) na província do Namibe, Angola em 2012; determinar a associação da presença da brucelose humana com variáveis sócio-demográficas, de conhecimento, de práticas e de características das explorações; determinar a prevalência da Brucelose em animais e em explorações; caracterizar os factores associados à presença da Brucelose em explorações bovinas; caracterizar o conhecimento e práticas sobre a Brucelose dos profissionais da pecuária e analisar a relação entre as prevalências nas explorações (infectadas versus não infectadas) e nos criadores (infectados versus não infectados). Métodos e materiais: estudos observacional e transversal seroepidemiológico em 131 trabalhadores de talhos, salas de abate e matadouro e 192 criadores amostrados aleatoriamente em toda província do Namibe. Os dados foram obtidos através da colheita de sangue e da aplicação de um questionário. Os testes laboratoriais utilizados foram o Rosa de Bengala (RBT) e a Aglutinação Lenta em Tubos (SAT). O estudo de conhecimento foi principalmente centrado na pergunta “Já ouviu falar de Brucelose” e nas questões relativas ao nível de conhecimento e práticas (indicadores baseados nas percentagens de respostas correctas ou práticas adequadas) dos factores de risco da Brucelose. Também foram investigados 1344 animais (em 192 explorações) com recurso ao método de diagnóstico laboratorial RBT para análise de soro sanguíneo e, complementarmente, foi aplicado um questionário aos respectivos criadores. Em termos de análise estatística, para além da abordagem descritiva, foram utilizados os testes de Independência do Quiquadrado, Fisher, Teste não paramétrico de Mann-Whitney, Teste de correlação de Spearman. Adicionalmente, com base em modelos de regressão logística, foram determinados odds ratio e os respectivos intervalos de confiança utilizando um nível de significância de 5%. Resultados: os ambientes dos profissionais (matadouro, talhos e salas municipais de abate e explorações) não reuniram as condições higio-sanitárias definidas internacionalmente como adequadas. Nos profissionais a infecção geral ponderada da Brucelose foi de 15.56% (IC95% : 13.61-17.50), sendo 5.34% em trabalhadores e 16.66% (IC95% : 11.39-21.93) em criadores. A significância estatística foi observada entre a seroprevalência humana e a categoria (trabalhador e criador) (p< 0.001) e o nível de instrução (p= 0.032), início de actividade (p= 0.079) e local de serviço (p= 0.055). Num contexto multivariado o factor positivamente associado à brucelose em profissionais foi a categoria profissional (OR = 3.54, IC95%: 1.57-8.30, relativo aos criadores em relação a trabalhadores). As taxas gerais aparentes de prevalência em animais e explorações foram respectivamente de 14.96% (IC 95%, 12.97-17.19) e de 40.10% (IC 95%, 32.75-47.93). Encontrou-se uma correlação positiva moderada entre o número de animais infectados por exploração com a média do número de abortos na exploração = 0.531, p< 0.001). Em média os profissionais tiveram um conhecimento global muito insuficiente (16.1%), tendo os trabalhadores apresentado valores mais elevados que os criadores (20.2% e 13.8%), diferença não estatisticamente significativa (p= 0.170). As perguntas “o leite in natura é fervido antes do consumo humano?”, “contacto com materiais fetais animais?”, “contacto com aerossóis no local de trabalho?” e “já fez alguma vez o teste de Brucelose humana?” (relacionadas com práticas) e as perguntas “já ouviu falar da Brucelose?”, “Brucelose é doença zoonótica/só animal/só humana? e “como a Brucelose se transmite aos humanos?” apresentaram níveis médios de práticas adequadas e conhecimentos correctos inferiores a 20%. Nas explorações infectadas, 39% dos criadores foram positivos (infectados) e nas não infectadas apenas 1.7%. O risco de um criador ser infectado estando numa exploração infectada foi significativamente mais elevado (OR= 36, IC95%: 8.28-157.04). Conclusões: os ambientes dos profissionais (matadouros, salas municipais de abate e talhos e explorações) propiciam o risco à brucelose. O estudo permite aferir que a Brucelose humana em profissionais da pecuária e a Brucelose animal são prevalentes na província do Namibe. Os níveis de seroprevalência detectados são elevados comparandoos com outros encontrados em algumas localidades africanas que possuem condições similares às do Namibe. Perto de duas em cada cinco (40.10%) explorações estão infectadas por esta doença. O número de abortos (média) está claramente relacionado com as explorações infectadas. O conhecimento geral dos profissionais da pecuária sobre a Brucelose é muito insuficiente, tendo os trabalhadores mostrado um maior conhecimento em relação aos criadores, mas ambos com níveis alarmantes. Os criadores infectados estão relacionados com as explorações infectadas. Há necessidade de controlar a doença e de informar e educar os profissionais sobre a brucelose, sendo fundamental que os serviços provinciais de veterinária reforcem acções de divulgação e de fiscalização.
Resumo:
RESUMO - Contexto: Admite-se a existência de variações no número e nível de experiência dos profissionais de saúde disponíveis nos hospitais durante a noite e o fim-de-semana. As consequências desta situação na qualidade dos cuidados de saúde prestados expõem a importância deste estudo realizado com o objetivo de avaliar o impacto do momento de admissão sobre a mortalidade e a demora média no internamento. Metodologia: Foram estudados 201 369 episódios urgentes, admitidos com um de 36 diagnósticos principais, de acordo com as informações na base de dados dos resumos de alta, para o ano de 2012. O momento de admissão foi definido por período (dias úteis/fim-de-semana) e por hora (dia/noite), e estimaram-se os efeitos fim-de-semana e noite ao nível da mortalidade e da demora média em modelos de regressão logística. Resultados: Registou-se um aumento de 3% no risco de morte, em doentes admitidos ao fim-de-semana. Diferenças que não se verificaram entre os doentes admitidos de dia e de noite. Relativamente à demora média, verificou-se um aumento de 3% na probabilidade dos doentes admitidos durante o fim-de-semana terem uma demora média de internamento superior. Assim como os doentes admitidos durante a noite apresentaram um aumento de 2,9% na probabilidade de terem demora média de internamento mais longa. Conclusão: Os dados apresentados permitem um melhor conhecimento sobre a influência da variação da atividade hospitalar ao longo do dia e da semana nos hospitais portugueses, identificando a necessidade de aprofundar o tema e de implementar medidas que suprimam os efeitos fim-de-semana e noite.
Resumo:
RESUMO - Contexto Os indivíduos, tal como as instituições, não são imunes a incentivos. No entanto, enquanto os modelos de incentivos das instituições têm sido alvo de diferentes evoluções, o mesmo não se verificou ao nível dos profissionais. Esta situação não se figura compatível com a complexidade de gestão de recursos humanos, devendo ser obviada para potenciar o alinhamento entre os interesses institucionais e os dos próprios profissionais. Objectivos Estudar a atribuição de incentivos a profissionais de saúde no contexto de organizações com integração vertical de cuidados. Metodologia A metodologia adoptada compreendeu três fases. Numa primeira procedeu-se à revisão sistemática de literatura relativa à: (1) construção de modelos de incentivo a profissionais em diferentes sistemas de saúde e tipo de prestadores; e (2) identificação de medidas de custo-efectividade comprovada. Tendo por base esta evidência, a par de documentação oficial ao nível do modelo de financiamento das ULS, procedeu-se, numa segunda fase, à construção de um modelo de incentivo base com recurso à ferramenta Microsoft Excel. Por último, numa terceira etapa, procedeu-se à adaptação do modelo base construído na etapa transacta tendo por base informação obtida mediante a realização de um estudo retrospectivo in loco na ULS do Baixo Alentejo (ULSBA). Em adição, procedeu-se à estimativa do impacto na perspectiva da ULS e dos profissionais para o cenário base e diversas análises de sensibilidade. Resultados No que respeita à estrutura, o modelo base de incentivos a profissionais apresenta 44 indicadores, distribuídos por cinco dimensões de análise, sendo que 28 indicadores (63,6%) são de processo e 14 (31,8%) de resultado. Relativamente às dimensões em análise, verifica-se uma predominância de indicadores ao nível da dimensão eficiência e qualidade assistencial, totalizando 35 (i.e. 79,5% dos 44 indicadores). No que respeita ao destinatário, 14 indicadores (31,8%) apresentam uma visão holística da ULS, 17 (38,6%) encontram-se adstritos unicamente aos cuidados primários e os remanescentes 13 (29,5%) aos cuidados hospitalares. Cerca de 85% dos actuais incentivos da ULSBA decorre da unidade de pagamento salarial secundada pelo pagamento de suplementos (12%). Não obstante, o estudo retrospectivo da ULSBA confirmou o cenário expectável de ausência de um modelo de incentivo homogéneos e transversal à ULS, transparecendo importantes assimetrias entre diferentes unidades prestadoras e/ou profissionais de saúde. De forma relevante importa apontar a insuficiência de incentivos capitacionais (ao contrário do que sucede com o modelo de incentivo da própria ULSBA) ou adstritos a índices de desempenho. Tendo em consideração o modelo de incentivo concebido e adaptado à realidade da ULSBA, a par do plano de implementação, estima-se que o modelo de incentivos gere: (1) poupanças na perspectiva da ULS (entre 2,5% a 3,5% do orçamento global da ULSBA); e (2) um incremento de remuneração ao nível dos profissionais (entre 5% a 15% do salario base). O supracitado – aparentemente contraditório - decorre da aposta em medidas de custo-efectividade contrastada e um alinhamento entre o modelo proposto e o vigente para o próprio financiamento da unidade, apostando numa clara estratégia de ganhos mútuos. As análises de sensibilidade realizadas permitem conferir a solidez e robustez do modelo a significativas variações em parâmetros chave.
Resumo:
INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.
Resumo:
This paper analyses the boundaries of simplified wind turbine models used to represent the behavior of wind turbines in order to conduct power system stability studies. Based on experimental measurements, the response of recent simplified (also known as generic) wind turbine models that are currently being developed by the International Standard IEC 61400-27 is compared to complex detailed models elaborated by wind turbine manufacturers. This International Standard, whose Technical Committee was convened in October 2009, is focused on defining generic simulation models for both wind turbines (Part 1) and wind farms (Part 2). The results of this work provide an improved understanding of the usability of generic models for conducting power system simulations.
Resumo:
The development of human cell models that recapitulate hepatic functionality allows the study of metabolic pathways involved in toxicity and disease. The increased biological relevance, cost-effectiveness and high-throughput of cell models can contribute to increase the efficiency of drug development in the pharmaceutical industry. Recapitulation of liver functionality in vitro requires the development of advanced culture strategies to mimic in vivo complexity, such as 3D culture, co-cultures or biomaterials. However, complex 3D models are typically associated with poor robustness, limited scalability and compatibility with screening methods. In this work, several strategies were used to develop highly functional and reproducible spheroid-based in vitro models of human hepatocytes and HepaRG cells using stirred culture systems. In chapter 2, the isolation of human hepatocytes from resected liver tissue was implemented and a liver tissue perfusion method was optimized towards the improvement of hepatocyte isolation and aggregation efficiency, resulting in an isolation protocol compatible with 3D culture. In chapter 3, human hepatocytes were co-cultivated with mesenchymal stem cells (MSC) and the phenotype of both cell types was characterized, showing that MSC acquire a supportive stromal function and hepatocytes retain differentiated hepatic functions, stability of drug metabolism enzymes and higher viability in co-cultures. In chapter 4, a 3D alginate microencapsulation strategy for the differentiation of HepaRG cells was evaluated and compared with the standard 2D DMSO-dependent differentiation, yielding higher differentiation efficiency, comparable levels of drug metabolism activity and significantly improved biosynthetic activity. The work developed in this thesis provides novel strategies for 3D culture of human hepatic cell models, which are reproducible, scalable and compatible with screening platforms. The phenotypic and functional characterization of the in vitro systems performed contributes to the state of the art of human hepatic cell models and can be applied to the improvement of pre-clinical drug development efficiency of the process, model disease and ultimately, development of cell-based therapeutic strategies for liver failure.
Resumo:
This paper develops the model of Bicego, Grosso, and Otranto (2008) and applies Hidden Markov Models to predict market direction. The paper draws an analogy between financial markets and speech recognition, seeking inspiration from the latter to solve common issues in quantitative investing. Whereas previous works focus mostly on very complex modifications of the original hidden markov model algorithm, the current paper provides an innovative methodology by drawing inspiration from thoroughly tested, yet simple, speech recognition methodologies. By grouping returns into sequences, Hidden Markov Models can then predict market direction the same way they are used to identify phonemes in speech recognition. The model proves highly successful in identifying market direction but fails to consistently identify whether a trend is in place. All in all, the current paper seeks to bridge the gap between speech recognition and quantitative finance and, even though the model is not fully successful, several refinements are suggested and the room for improvement is significant.
Resumo:
The life of humans and most living beings depend on sensation and perception for the best assessment of the surrounding world. Sensorial organs acquire a variety of stimuli that are interpreted and integrated in our brain for immediate use or stored in memory for later recall. Among the reasoning aspects, a person has to decide what to do with available information. Emotions are classifiers of collected information, assigning a personal meaning to objects, events and individuals, making part of our own identity. Emotions play a decisive role in cognitive processes as reasoning, decision and memory by assigning relevance to collected information. The access to pervasive computing devices, empowered by the ability to sense and perceive the world, provides new forms of acquiring and integrating information. But prior to data assessment on its usefulness, systems must capture and ensure that data is properly managed for diverse possible goals. Portable and wearable devices are now able to gather and store information, from the environment and from our body, using cloud based services and Internet connections. Systems limitations in handling sensorial data, compared with our sensorial capabilities constitute an identified problem. Another problem is the lack of interoperability between humans and devices, as they do not properly understand human’s emotional states and human needs. Addressing those problems is a motivation for the present research work. The mission hereby assumed is to include sensorial and physiological data into a Framework that will be able to manage collected data towards human cognitive functions, supported by a new data model. By learning from selected human functional and behavioural models and reasoning over collected data, the Framework aims at providing evaluation on a person’s emotional state, for empowering human centric applications, along with the capability of storing episodic information on a person’s life with physiologic indicators on emotional states to be used by new generation applications.
Resumo:
Natural disasters are events that cause general and widespread destruction of the built environment and are becoming increasingly recurrent. They are a product of vulnerability and community exposure to natural hazards, generating a multitude of social, economic and cultural issues of which the loss of housing and the subsequent need for shelter is one of its major consequences. Nowadays, numerous factors contribute to increased vulnerability and exposure to natural disasters such as climate change with its impacts felt across the globe and which is currently seen as a worldwide threat to the built environment. The abandonment of disaster-affected areas can also push populations to regions where natural hazards are felt more severely. Although several actors in the post-disaster scenario provide for shelter needs and recovery programs, housing is often inadequate and unable to resist the effects of future natural hazards. Resilient housing is commonly not addressed due to the urgency in sheltering affected populations. However, by neglecting risks of exposure in construction, houses become vulnerable and are likely to be damaged or destroyed in future natural hazard events. That being said it becomes fundamental to include resilience criteria, when it comes to housing, which in turn will allow new houses to better withstand the passage of time and natural disasters, in the safest way possible. This master thesis is intended to provide guiding principles to take towards housing recovery after natural disasters, particularly in the form of flood resilient construction, considering floods are responsible for the largest number of natural disasters. To this purpose, the main structures that house affected populations were identified and analyzed in depth. After assessing the risks and damages that flood events can cause in housing, a methodology was proposed for flood resilient housing models, in which there were identified key criteria that housing should meet. The same methodology is based in the US Federal Emergency Management Agency requirements and recommendations in accordance to specific flood zones. Finally, a case study in Maldives – one of the most vulnerable countries to sea level rise resulting from climate change – has been analyzed in light of housing recovery in a post-disaster induced scenario. This analysis was carried out by using the proposed methodology with the intent of assessing the resilience of the newly built housing to floods in the aftermath of the 2004 Indian Ocean Tsunami.