889 resultados para Secreting Gland
Resumo:
Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.
Resumo:
Silk gland cells ofBombyx mori undergo chromosomal endoduplication throughout larval development. The DNA content of both posterior and middle silk gland nuclei increased by 300000 times the haploid genomic content, amounting to 18 rounds of replication. The DNA doubling time is approximately 48 h and 24 h during the fourth and fifth instars of larval development. However, DNA content does not change during the interim moult. Concomitant with DNA content, DNA polymerase activity also increases as development progressed. Enzyme activity is predominantly due to DNA polymerase with no detectable level of polymerase . DNA polymerase from silk gland extracts was purified to homogeneity (using a series of columns involving ionexchange, gel-filtration and affintiy chromatography), resulting in a 4000-fold increase in specific activity. The enzyme is a heterogeneous multimer of high molecular mass, and the catalytic (polymerase) activity is resident in the 180-kDa subunit. The enzyme shows a PI of 6.2 and theKm values for the dNTP vary over 5-16 . The polymerase is tightly associated with primase activity and initiates primer synthesis in the presence of ribonucleoside triphosphates on a single-stranded DNA template. The primase activity is resident in the 45-kDa subunit. The enzyme is devoid of any detectable exonuclease activity. The abundance of DNA polymerase α in silk glands and its strong association with the nuclear matrix suggest a role in the DNA endoduplication process.
Resumo:
The Golgi complex is a central organelle of the secretory pathway, responsible for a range of post-translational modifications, as well as for membrane traffic to the plasma membrane and to the endosomal-lysosomal pathway. In addition, this organelle has roles in cell migration, in the regulation of traffic, and as a mitotic check point. The structure of the Golgi complex is highly dynamic and able to respond to the amount of cargo being transported and the stage of the cell cycle. The Golgi proteome reflects the functions and structure of this organelle, and can be divided into three major groups: the Golgi resident proteins (e.g. modification enzymes), the Golgi matrix proteins (involved in structure and tethering events), and trafficking proteins (e.g. vesicle coat proteins and Rabs). The Golgi proteome has been studied on several occasions, from both rat liver and mammary gland Golgi membranes using proteomic approaches, but still little more than half of the estimated Golgi proteome is known. Nevertheless, methodological improvements and introduction of shotgun proteomics have increased the number of identified proteins, and especially the number of identified transmembrane proteins. Cartilage, even though not a typical tissue in which to study membrane traffic, secretes large amounts of extracellular matrix proteins that are extensively modified, especially by amino acid hydroxylation, glycosylation and sulfation. Furthermore, the cartilage ECM contains several, large oligomeric proteins (such as collagen II) that are difficult to assemble and transport. Indeed, cartilage has been shown to be susceptible to changes both in secretory pathway (e.g. the COPII coat assembly) and in post-translational modifications (e.g. heparan sulfate formation). Dental follicle, and the periodontal ligament (PDL) that it forms, are another type of connective tissue, and they have a role in anchoring teeth to bone. This anchorage is achieved by numerous matrix fibres that connect the bone matrix with the cementum. These tissues have in common the secretion of large matrix molecules. In this study the Golgi proteome was analysed from purified, stacked Golgi membranes isolated from rat liver. The identified, extensive proteome included a protein similar to Ab2-095, or Golgi protein 49kDa (GoPro49), which was shown to localise to the Golgi complex as an EGFP fusion protein. Surprisingly, in situ hybridisation showed the GoPro49 expression to be highly restricted to different mesenchymal tissues, especially in cartilage, and this expression pattern was clearly developmentally regulated. In addition to cartilage, GoPro49 was also expressed in the dental follicle, but was not observed in the mature PDL. Importantly, GoPro49 is the first specific marker for the dental follicle. Endogenous GoPro49 protein co-localised with β-COP in both chondrosarcoma and primary dental follicle cell lines. The COPI staining in these cells was highly dynamic, showing a number of tubules. This may reflect the type of secretory cargo they secrete. Currently GoPro49 is the only Golgi protein with such a restricted expression pattern.
Resumo:
We have systematically analysed the ultra structure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium). The wild-type displayed a number of ER subdomains including parallel tubular/cisternal ER, ER whorls, ER-isolation membrane complexes with abundant autophagy vacuoles and dense bodies. Rut-C30 and its transformant BV47 overexpressing the BiP1-VenusYFP fusion protein also contained parallel tubular/cisternal ER, but no ER whorls; also, there were very few autophagy vacuoles and an increasing amount of punctate bodies where particularly the recombinant BiP1-VenusYFPfusion protein was localised. The early presence of distinct strain-specific features such as the dominance of ER whorls in the wild type and tub/cis ER in Rut-C30 suggests that these are inherent traits and not solely a result of cellular response mechanisms by the high secreting mutant to protein overload.
Resumo:
Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.
Resumo:
The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), are involved in the development, differentiation and maintenance of many types of neurons. They also have important functions outside the nervous system in the development of kidney, testis and thyroid gland. Each of these GFLs preferentially binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse GFRα4 gene yields three splice isoforms. These had been described as putative GPI-anchored, transmembrane and soluble forms. My goal was to characterise the function of the different forms of mouse GFRα4. I firstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought to be a crucial event for GDNF- and GFL-mediated signalling via RET. I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal differentiation or survival. These data show that GFRα4-TM is inactive as a receptor for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signalling via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated signaling. The most exciting part of my work was the finding that the putative soluble GFRα4 (GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the survival of CGN. Our findings are in line with a recent publication showing the GFRα4-sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the disease. Mammalian GFRα4 receptors all lack the first Cys-rich domain which is present in other GFRα receptors. In the final part of my work I have studied the function of this particular domain. I created a truncated GFRα1 construct lacking the first Cys-rich domain. Using binding assays in both cellular and cell-free systems, phosphorylation assays with RET, as well as neurite outgrowth assays, we found that the first Cys-rich domain contributes to an optimal function of GFRα1, by stabilizing the interaction between GDNF and GFRα1.
Resumo:
Context: Tumor-induced osteomalacia (TIO) is a rarely diagnosed disorder presenting with bone pain, fractures, muscle weakness, and moderate-to-severe hypophosphatemia resulting from fibroblast growth factor 23-mediated renal phosphate wasting. Tumors secreting fibroblast growth factor 23 are often small and difficult to find with conventional imaging. Objective: We studied the utility of 68Ga-DOTA-octreotate (DOTATATE) somatostatin receptor positron emission tomography (PET)/computed tomography (CT) imaging in the diagnosis of TIO. Design and Setting: A multicenter case series was conducted at tertiary referral hospitals. Patients and Methods: Six patients with TIO diagnosed between 2003 and 2012 in Australia were referred for DOTATATE PET imaging. We reviewed the clinical history, biochemistry, imaging characteristics, histopathology, and clinical outcome of each patient. Results: Each case demonstrated delayed diagnosis despite severe symptoms. DOTATATE PET/CT imaging demonstrated high uptake and localized the tumor with confidence in each case. After surgical excision, there was resolution of clinical symptoms and serum phosphate, except in one patient who demonstrated residual disease on PET/CT. All tumors demonstrated high somatostatin receptor subtype 2 cell surface receptor expression using immunohistochemistry. Conclusions: In patients with TIO, DOTATATE PET/CT can successfully localize phosphaturic mesenchymal tumors and may be a practical first step in functional imaging for this disorder. Serum phosphate should be measured routinely in patients with unexplained muscle weakness, bone pain, or stress fractures to allow earlier diagnosis of TIO. - See more at: http://press.endocrine.org/doi/abs/10.1210/jc.2012-3642#sthash.eXD0CopL.dpuf
Resumo:
The rare autosomal recessive disease congenital chloride diarrhea (CLD) is caused by mutations in the solute carrier family 26 member 3 (SLC26A3) gene on chromosome 7q22.3-31.1. SLC26A3 encodes for an apical epithelial chloride-bicarbonate exchanger, the intestinal loss of which leads to profuse chloride-rich diarrhea, and a tendency to hypochloremic and hypokalemic metabolic alkalosis. Although untreated CLD is usually lethal in early infancy, the development of salt substitution therapy with NaCl and KCl in the late 1960s made the disease treatable. While the salt substitution allows normal childhood growth and development in CLD, data on long-term outcome have remained unclarified. One of the world s highest incidences of CLD 1:30 000 to 1:40 000 occurs in Finland, and CLD is part of the Finnish disease heritage. We utilized a unique sample of Finnish patients to characterize the long-term outcome of CLD. Another purpose of this study was to search for novel manifestations of CLD based on the extraintestinal expression of the SLC26A3 gene. This study on a sample of 36 patients (ages 10-38) shows that the long-term outcome of treated CLD is favorable. In untreated or poorly treated cases, however, chronic contraction and metabolic imbalance may lead to renal injury and even to renal transplantation. Our results demonstrate a low-level expression of SLC26A3 in the human kidney. Although SLC26A3 may play a minor role in homeostasis, post-transplant recurrence of renal changes shows the unlikelihood of direct transporter modulation in the pathogenesis of CLD-related renal injury. Options to resolve the diarrheal symptoms of CLD have been limited. Unfortunately, our pilot trial indicated the inefficacy of oral butyrate as well. This study reveals novel manifestations of CLD. These include an increased risk for hyperuricemia, inguinal hernias, and probably for intestinal inflammation. The most notable finding of this study is CLD-associated male subfertility. This involves a low concentration of poorly motile spermatozoa with abnormal morphology, high seminal plasma chloride with a low pH, and a tendency to form spermatoceles. That SLC26A3 immunoexpression appeared at multiple sites of the male reproductive tract in part together with the main interacting proteins cystic fibrosis transmembrane conductance regulator (CFTR) and sodium-hydrogen exchanger 3 (NHE3) suggests novel sites for the cooperation of these proteins. As evidence of the cooperation, defects occurring in any of these transporters are associated with reduced male fertility. Together with a finding of high sweat chloride in CLD, this study provides novel data on extraintestinal actions of the SLC26A3 gene both in the male reproductive tract and in the sweat gland. These results provide the basis for future studies regarding the role of SLC26A3 in different tissues, especially in the male reproductive tract. Fortunately, normal spermatogenesis in CLD is likely to make artificial reproductive technologies to treat infertility and even make unassisted reproduction possible.
Resumo:
The granule exocytosis cytotoxicity pathway is the major molecular mechanism for cytotoxic T lymphocyte (CTL) and natural killer (NK) cytotoxicity, but the question of how these cytotoxic lymphocytes avoid self-destruction after secreting perforin has remained unresolved. We show that CTL and NK cells die within a few hours if they are triggered to degranulate in the presence of nontoxic thiol cathepsin protease inhibitors. The potent activity of the impermeant, highly cathepsin B-specific membrane inhibitors CA074 and NS-196 strongly implicates extracellular cathepsin B. CTL suicide in the presence of cathepsin inhibitors requires the granule exocytosis cytotoxicity pathway, as it is normal with CTLs from gld mice, but does not occur in CTLs from perforin knockout mice. Flow cytometry shows that CTLs express low to undetectable levels of cathepsin B on their surface before degranulation, with a substantial rapid increase after T cell receptor triggering. Surface cathepsin B eluted from live CTL after degranulation by calcium chelation is the single chain processed form of active cathepsin B. Degranulated CTLs are surface biotinylated by the cathepsin B-specific affinity reagent NS-196, which exclusively labels immunoreactive cathepsin B. These experiments support a model in which granule-derived surface cathepsin B provides self-protection for degranulating cytotoxic lymphocytes.
Resumo:
CD4+ and gamma delta T cells are activated readily by Mycobacterium tuberculosis. To examine their role in the human immune response to M. tuberculosis, CD4+ and gamma delta T cells from healthy tuberculin-positive donor were studied for patterns of Ag recognition, cytotoxicity, and cytokine production in response to M. tuberculosis-infected mononuclear phagocytes. Both T cell subsets responded to intact M. tuberculosis and its cytosolic Ags. However, CD4+ and gamma delta T cells differed in the range of cytosolic Ags recognized: reactivity to a wide m.w. range of Ags for CD4+ T cells, and a restricted pattern for gamma delta T cells, with dominance of Ags of 10 to 15 kDa. Both T cell subsets were equally cytotoxic for M. tuberculosis-infected monocytes. Furthermore, both CD4+ and gamma delta T cells produced large amounts of IFN-gamma: mean pg/ml of IFN-gamma in supernatants was 2458 +/- 213 for CD4+ and 2349 +/- 245 for gamma delta T cells. By filter-spot ELISA (ELISPOT), the frequency of IFN-gamma-secreting gamma delta T cells was one-half of that of CD4+ T cells in response to M. tuberculosis, suggesting that gamma delta T cells on a per cell basis were more efficient producers of IFN-gamma than CD4+ T cells. In contrast, CD4+ T cells produced more IL-2 than gamma delta T cells, which correlated with diminished T cell proliferation of gamma delta T cells compared with CD4+ T cells. These results indicate that CD4+ and gamma delta T cell subsets have similar effector functions (cytotoxicity, IFN-gamma production) in response to M. tuberculosis-infected macrophages, despite differences in the Ags recognized, IL-2 production, and efficiency of IFN-gamma production.
Resumo:
The aim of this study was twofold- Firstly, to determine the composition of the type IV collagen which are the major components of the basement membrane (BM), in the synovial lining of the rheumatoid arthritis (RA) patient and in the BM in the labial salivary gland of the Sjögrens syndrome (SS) patient. Secondly, this thesis aimed to investigate the role of the BM component laminin α4 and laminin α5 in the migration of neutrophils from the blood vessels thorough the synovial lining layer into synovial fluid and the presence of vWF in the microvasculature of labial salivary gland in SS. Our studies showed that certain α chains type IV collagen are low in RA compared to control synovial linings, while laminin α5 exhibited a pattern of low expression regions at the synovial lining interface towards the joint cavity and fluid. Also, high numbers of macrophage-like lining cells containing MMP-9 were found in the lining. MMP-9 was also found in the synovial fluid. Collagen α1/2 (IV) mRNA was found to be present in high amount compared to the other α(IV) chains and also showed intense labelling in immunohistochemical staining in normal and SS patients. In healthy glands α5(IV) and α6(IV) chains were found to be continuous around ducts but discontinuous around acini. The α5(IV) and α6(IV) mRNAs were present in LSG explants and HSG cell line, while in SS these chains seemed to be absent or appear only in patches around the ductal BM and tended to be absent around acini in immunohistochemical staining, indicating that their synthesis and/or degradation seemed to be locally regulated around acinar cells. The provisional matrix component vWF serves as a marker of vascular damage. Microvasculature in SS showed signs of focal damage which in turn might impair arteriolar feeding, capillary transudation and venular drainage of blood. However, capillary density was not decreased but rather increased, perhaps as a result of angiogenesis compensatory to microvascular damage. Microvascular involvement of LSG may contribute to the pathogenesis of this syndrome. This twofold approach allows us to understand the intricate relation between the ECM components and the immunopathological changes that occur during the pathogenesis of these inflammatory rheumatic disease processes. Also notably this study highlights the importance of maintaining a healthy ECM to prevent the progression or possibly allow reversal of the disease to a considerable level. Furthermore, it can be speculated that a healthy BM could quarantine the inflamed region or in case of cancer cells barricade the movement of malignant cells thereby preventing further spread to the surrounding areas. This understanding can be further applied to design appropriate drugs which act specifically to maintain a proper BM/BM like intercellular matrix composition.
Replication of Japanese encephalitis virus in mouse brain induces alterations in lymphocyte response
Resumo:
The experimental model using intracerebral (i.c.) challenge was employed in many studies evaluating the protection against disease induced by Japanese encephalitis virus (JEV). We investigated alterations in peripheral lymphocyte response caused by i.c. infection of mice with JEV. Splenocytes from the i.c.-infected mice showed suppressed proliferative response to concanavalin A (con A) and anti-CD3 antibody stimulation. At the same time, the expression of CD25 (IL-2R) and production of IL-2 was inhibited. Addition of anti-CD28 antibody restored the decreased anti-CD3 antibody-mediated proliferation in the splenocytes. Moreover, the number of con A-stimulated cells secreting IL-4 was significantly reduced in splenocytes from i.c.-infected mice. These studies suggested that the i.c. infection with JEV might involve additional immune modulation effects due to massive virus replication in the brain.
Resumo:
Queens and workers are not morphologically differentiated in the primitively eusocial wasp, Ropalidia marginata. Upon removal of the queen, one of the workers becomes extremely aggressive, but immediately drops her aggression if the queen is returned. If the queen is not returned, this hyper-aggressive individual, the potential queen (PQ), will develop her ovaries, lose her hyper-aggression, and become the next colony queen. Because of the non-aggressive nature of the queen, and because the PQ loses her aggression by the time she starts laying eggs, we hypothesized that regulation of worker reproduction in R marginata is mediated by pheromones rather than by physical aggression. Based on the immediate loss of aggression by the PQ upon return of the queen, we developed a bioassay to test whether the queen's Dufour's gland is, at least, one of the sources of the queen pheromone. Macerates of the queen's Dufour's gland, but not that of the worker's Dufour's gland, mimic the queen in making the PQ decrease her aggression. We also correctly distinguished queens and workers of R. marginata nests by a discriminant function analysis based on the chemical composition of their respective Dufour's glands.
Resumo:
The role of hippuric acid formation as a mechanism for detoxication of benzoic acid in the silkworm has been investigated. Benzoate is inhibitory to the growth of the silkworm and excreted as hippuric acid, which is not toxic. Hippuric acid is not a normal constituent of excreta. Synthesis of hippuric acid has been shown to occur in the intestines of the silkworm. Hippuricase activity is present in the fat body and silk-gland tissue.
Resumo:
The transport of glycine in vitro into the silk glands of the silkworm has been studied. Glycine accumulates inside the tissue to a concentration higher than that present outside, indicating an active transport mechanism. The kinetics of uptake show a biphasic curve and two apparent Km values for accumulation, 0.33 mM and 5.00 mM. The effect of inhibitors on the energy metabolism of glycine transport is inconclusive. Exchange studies indicate the existence of two pools inside the gland, one that is easily removed by exchange and osmotic shock, and the other which is not. The results obtained conform with the carrier model of Britten and McClure concerning the amino-acid pool in E. coli.