951 resultados para Scaling and root planing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-04

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction of an international index of standards of living, incorporating social indicators and economic output, typically involves scaling and weighting procedures that lack welfare-economic foundations. Revealed preference axioms can be used to make quality-of-life comparisons if we can estimate the representative household's production technology for the social indicators. This method is applied to comparisons of gross domestic product (GDP) and life expectancy for 58 countries. Neither GDP rankings, nor the rankings of the Human Development Index (HDI), are consistent with the partial ordering of revealed preference. A method of constructing a utility-consistent index incorporating both consumption and life expectancy is suggested. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screenhouse studies were conducted to investigate the effects of Fusarium oxysporum f. sp. glycines and Sclerotium rolfsii on the pathogenicity of Meloidogyne incognita race 2 on soybean and the influence of the nematode on wilt incidence and growth of soybean. The interaction of each fungus with the nematode resulted in reduced shoot and root growth. Final nematode population was also reduced with concomitant inoculation of nematode and fungus or inoculation of fungus before nematode. While M. incognita suppressed wilt incidence in two nematode-susceptible cultivars of soybean (TGX 1485-2D and TGX 1440-IE), it had limited effect on wilt incidence in the nematode resistant cultivar of soybean (TGX 1448-2E). When F. oxysporum was inoculated with the nematode, the mean number of nematodes that penetrated soybean roots decreased by 75% in TGX 1448-2E, 68% in TGX 1485-1D and 65% in TGX 1440-1E. Similarly when the soil was treated with S. rolfsii, the number decreased by 78% in TGX 1448-2E, 77% in TGX 1485-1D and 68% in TGX 1440-1E. The nematode did not develop beyond second-stage juvenile in TGX-1448-2E.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite a century's knowledge that soluble aluminum (Al) is associated with acid soils and poor plant growth, it is still uncertain how Al exerts its deleterious effects. Hypotheses include reactions of Al with components of the cell wall, plasmalemma, or cytoplasm of cells close to the root tip, thereby reducing cell expansion and root growth. Digital microscopy was used to determine the initial injuries of soluble Al to mungbean (Vigna radiata L.) roots. Roots of young seedlings were marked with activated carbon particles and grown in 1 mm CaCl2 solution at pH 6 for ca. 100 min (control period), and AlCl3 solution was added to ensure a final concentration of 50 muM Al (pH 4). Further studies were conducted on the effects of pH 4 with and without 50 muM Al. Four distinct, but possibly related, initial detrimental effects of soluble Al were noted. First, there was a 56-75% reduction in the root elongation rate, first evident 18-52 min after the addition of Al, root elongation continuing at a decreased rate for ca. 20 It. Decreasing solution pH from 6 to 4 increased the root elongation rate 4-fold after 5 min, which decreased to close to the original rate after 130 min. The addition of Al during the period of rapid growth at pH 4 reduced the root elongation rate by 71% 14 min after the addition of Al. The activated carbon marks on the roots showed that, during the control period, the zone of maximum root growth occurred at 2,200-5,100 mum from the root tip (i.e. the cell elongation zone). It was there that Al first exerted its detrimental effect and low pH increased root elongation. Second, soluble Al prevented the progress of cells from the transition to the elongation phase, resulting in a considerable reduction of root growth over the longer term. The third type of soluble Al injury occurred after exposure for ca. 4 h to 50 mum Al when a kink developed at 2,370 mum from the root tip. Fourth, ruptures of the root epidermal and cortical cells at 1,900-2,300 mum from the tip occurred greater than or equal to4.3 h after exposure to soluble Al. The timing and location of Al injuries support the contention that Al initially reduces cell elongation, thus decreasing root growth and causing damage to epidermal and cortical cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research presented indicates that lucerne crown and root rot caused by Stagonospora meliloti is prevalent in southern New South Wales, whereas Acrocalymma medicaginis is the more commonly observed pathogen in Queensland. Although both pathogens cause reddening of internal root and crown tissue of lucerne, they can be distinguished by symptomatology. S. meliloti causes a diffuse red blotching of the internal tissue accompanied by the presence of an external lesion, whereas A. medicaginis causes red streaking at the extremity of wedge-shaped, dry-rotted tissue. Inoculation of propagules of a susceptible lucerne clone indicated that S. meliloti was the more aggressive pathogen. Although A. medicaginis does not cause leaf disease, there was a strong relationship between the leaf and root reaction of clones to S. meliloti. Inheritance of resistance to S. meliloti in lucerne appeared to be conditioned by a single dominant gene, based on segregations observed in S-1 and F-1 populations, but not in a backcross population from the same family where an excess of susceptible individuals (74% v. expected of 50%) was obtained in a cross of a resistant F-1 individual to the susceptible parent. Resistance appears to be highly heritable, however, and amenable to population improvement by breeding. A conclusion of the research is that breeding for resistance to S. meliloti for lucernes to be grown in southern Australia would appear to be a worthwhile objective. Presently, no highly resistant cultivars exist anywhere in the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from > 0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acclimatization and ex vitro establishment of tissue cultured coconut plantlets regenerated either from zygotic or somatic embryos could result to serious losses. Although high germination rates can be achieved in vitro, the survival of zygotic embryo derived plantlets in soil is very low (0-30%). Hence, treatments that could promote development of good quality seedlings having well-developed shoot and root is needed to increase seedling survival ex vitro. The effect of physical, chemical and light quality treatments on germination and growth of coconut embryos and tissue-cultured seedlings respectively, was investigated. The germination of coconut embryos was promoted when placed in a liquid Euwens (Y3) medium and incubated using a roller drum. Gibberellic acid (GA3) significantly affected growth of seedlings as it promoted shoot elongation, shoot and root expansion, and fresh and dry weight increase. However, GA3 did not significantly affect germination. In addition, the blue, red and yellow light significantly affected growth of seedlings as it promoted leaf and shoot elongation, fresh and dry weight increase, and root and leaf production. These conditions could be used to improve the growth and survival ex vitro of tissue cultured coconuts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wide and ‘skip row’ row configurations have been used as a means to improve yield reliability in grain sorghum production. However, there has been little effort put to design of these systems in relation to optimal combinations of root system characteristics and row configuration, largely because little is known about root system characteristics. The studies reported here aimed to determine the potential extent of root system exploration in skip row systems. Field experiments were conducted under rain-out shelters and the extent of water extraction and root system growth measured. One experiment was conducted using widely-spaced twin rows grown in the soil. The other experiment involved the use of specially constructed large root observation chambers for single plants. It was found that the potential extent of root system exploration in sorghum was beyond 2m from the planted rows using conventional hybrids and that root exploration continued during grain filling. Preliminary data suggested that the extent of water extraction throughout this region depended on root length density and the balance between demand for, and supply of, water. The results to date suggest that simultaneous genetic and management manipulation of wide row production systems might lead to more effective and reliable production in specific environments. Further study of variation in root-shoot dynamics and root system characteristics is required to exploit possible opportunities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have initiated an EST sequencing project to survey a range of expressed sequences from green fruit, yellow fruit, roots, and root-knot nematode infected root/gall tissues. In total, 5681 edited EST sequences were retrieved. Clone redundancy was high in the fruit libraries, with the combined fruit 1548 clone sequences clustering into just 634 contigs comprising 191 consensus sequences and 443 singletons. Half of all fruit EST clone sequences clustered within approximately 14 and 9% of contigs from green unripe and yellow ripe libraries respectively, indicating that a small subset of genes dominates the majority of the transcriptome. The root and root/gall libraries had lower levels of redundancy than the fruit libraries. Half of the root/gall ESTs clustered within approximately 40% of all contigs, indicating the roots possess a more complex transcriptome. Contig assembly and cluster analysis revealed major differences in the abundant gene sequences expressed between the unripe green and the ripe yellow fruit tissues, or gene sequences expressed between the weeks 1-4 and weeks 5-10 nematode infected gall vascular cylinder libraries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of the generation of topographic mappings - dimension reducing transformations of data that preserve some element of geometric structure - with feed-forward neural networks. As an alternative to established methods, a transformational variant of Sammon's method is proposed, where the projection is effected by a radial basis function neural network. This approach is related to the statistical field of multidimensional scaling, and from that the concept of a 'subjective metric' is defined, which permits the exploitation of additional prior knowledge concerning the data in the mapping process. This then enables the generation of more appropriate feature spaces for the purposes of enhanced visualisation or subsequent classification. A comparison with established methods for feature extraction is given for data taken from the 1992 Research Assessment Exercise for higher educational institutions in the United Kingdom. This is a difficult high-dimensional dataset, and illustrates well the benefit of the new topographic technique. A generalisation of the proposed model is considered for implementation of the classical multidimensional scaling (¸mds}) routine. This is related to Oja's principal subspace neural network, whose learning rule is shown to descend the error surface of the proposed ¸mds model. Some of the technical issues concerning the design and training of topographic neural networks are investigated. It is shown that neural network models can be less sensitive to entrapment in the sub-optimal global minima that badly affect the standard Sammon algorithm, and tend to exhibit good generalisation as a result of implicit weight decay in the training process. It is further argued that for ideal structure retention, the network transformation should be perfectly smooth for all inter-data directions in input space. Finally, there is a critique of optimisation techniques for topographic mappings, and a new training algorithm is proposed. A convergence proof is given, and the method is shown to produce lower-error mappings more rapidly than previous algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy consumption has been a key concern of data gathering in wireless sensor networks. Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, such technique will also impact on both packet delivery latency and packet loss, therefore, may result in adverse effects on the qualities of applications. In this paper, we study the problem of modulation scaling and energy-optimization. A mathematical model is proposed to analyze the impact of modulation scaling on the overall energy consumption, end-to-end mean delivery latency and mean packet loss rate. A centralized optimal management mechanism is developed based on the model, which adaptively adjusts the modulation levels to minimize energy consumption while ensuring the QoS for data gathering. Experimental results show that the management mechanism saves significant energy in all the investigated scenarios. Some valuable results are also observed in the experiments. © 2004 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibration treatment by oscillating platforms is more and more employed in the fields of exercise physiology and bone research. The rationale of this treatment is based on the neuromuscular system response elicited by vibration loads. surface Electromyography (EMG) is largely utilized to assess muscular response elicited by vibrations and Root Mean Square of the electromyography signals is often used as a concise quantitative index of muscle activity; in general, EMG envelope or RMS is expected to increase during vibration. However, it is well known that during surface bio-potential recording, motion artifacts may arise from relative motion between electrodes and skin and between skin layers. Also the only skin stretch, modifying the internal charge distribution, results in a variation of electrode potential. The aim of this study is to highlight the movements of muscles, and the succeeding relevance of motion artifacts on electrodes, in subjects undergoing vibration treatments. EMGs from quadriceps of fifteen subjects were recorded during vibration at different frequencies (15-40 Hz); Triaxial accelerometers were placed onto quadriceps, as close as possible to muscle belly, to monitor motion. The computed muscle belly displacements showed a peculiar behavior reflecting the mechanical properties of the structures involved. Motion artifact related to the impressed vibration have been recognized and related to movement of the soft tissues. In fact large artifacts are visible on EMGs and patellar electrodes recordings during vibration. Signals spectra also revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with accelerometers data. © 2008 Springer-Verlag.