999 resultados para Research grants
Resumo:
Objectives The objective was to study the role and effect of patients' perceptions on reasons for using ambulance services in Queensland, Australia. Methods A cross-sectional survey was conducted of patients (n = 911) presenting via ambulance or self-transport at eight public hospital emergency departments (EDs). The survey included perceived illness severity, attitudes toward ambulance, and reasons for using ambulance. A theoretical framework was developed to inform this study. Results Ambulance users had significantly higher self-rated perceived seriousness, urgency, and pain than self-transports. They were also more likely to agree that ambulance services are for everyone to use, regardless of the severity of their conditions. In compared to self-transports, likelihood of using an ambulance increased by 26% for every unit increase in perceived seriousness; and patients who had not used an ambulance in the 6 months prior to the survey were 66% less likely to arrive by ambulance. Patients who had presented via ambulance stated they considered the urgency (87%) or severity (84%) of their conditions as reasons for calling the ambulance. Other reasons included requiring special care (76%), getting higher priority at the ED (34%), not having a car (34%), and financial concerns (17%). Conclusions Understanding patients' perceptions is essential in explaining their actions and developing safe and effective health promotion programs. Individuals use ambulances for various reasons and justifications according to their beliefs, attitudes, and sociodemographic conditions. Policies to reduce and manage demand for such services need to address both general opinions and specific attitudes toward emergency health services to be effective.
Resumo:
Twitter is now well-established as an important platform for real-time public communication. Twitter research continues to lag behind these developments, with many studies remaining focused on individual case studies and utilizing home-grown, idiosyncratic, non-repeatable, and non-verifiable research methodologies. While the development of a full-blown “science of Twitter” may remain illusory, it is nonetheless necessary to move beyond such individual scholarship and toward the development of more comprehensive, transferable, and rigorous tools and methods for the study of Twitter on a large scale and in close to real time.
Resumo:
The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.
Resumo:
Due to the explosive growth of the Web, the domain of Web personalization has gained great momentum both in the research and commercial areas. One of the most popular web personalization systems is recommender systems. In recommender systems choosing user information that can be used to profile users is very crucial for user profiling. In Web 2.0, one facility that can help users organize Web resources of their interest is user tagging systems. Exploring user tagging behavior provides a promising way for understanding users’ information needs since tags are given directly by users. However, free and relatively uncontrolled vocabulary makes the user self-defined tags lack of standardization and semantic ambiguity. Also, the relationships among tags need to be explored since there are rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach for learning tag ontology based on the widely used lexical database WordNet for capturing the semantics and the structural relationships of tags. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. To personalize further, clustering of users is performed to generate a more accurate ontology for a particular group of users. In order to evaluate the usefulness of the tag ontology, we use the tag ontology in a pilot tag recommendation experiment for improving the recommendation performance by exploiting the semantic information in the tag ontology. The initial result shows that the personalized information has improved the accuracy of the tag recommendation.
Resumo:
This paper examines the rapid and ad hoc development and interactions of participative citizen communities during acute events, using the examples of the 2011 floods in Queensland, Australia, and the global controversy surrounding Wikileaks and its spokesman, Julian Assange. The self-organising community responses to such events which can be observed in these cases bypass or leapfrog, at least temporarily, most organisational or administrative hurdles which may otherwise frustrate the establishment of online communities; they fast-track the processes of community development and structuration. By understanding them as a form of rapid prototyping, e-democracy initiatives can draw important lessons from observing the community activities around such acute events.
Resumo:
Amongst the most prominent uses of Twitter at present is its role in the discussion of widely televised events: Twitter’s own statistics for 2011, for example, list major entertainment spectacles (the MTV Music Awards, the BET Awards) and sports matches (the UEFA Champions League final, the FIFA Women’s World Cup final) amongst the events generating the most tweets per second during the year (Twitter, 2011). User activities during such televised events constitute a specific, unique category of Twitter use, which differs clearly from the other major events which generate a high rate of tweets per second (such as crises and breaking news, from the Japanese earthquake and tsunami to the death of Steve Jobs), as preliminary research has shown. During such major media events, by contrast, Twitter is used most predominantly as a technology of fandom instead: it serves in the first place as a backchannel to television and other streaming audiovisual media, enabling users offer their own running commentary on the universally shared media text of the event broadcast as it unfolds live. Centrally, this communion of fans around the shared text is facilitated by the use of Twitter hashtags – unifying textual markers which are now often promoted to prospective audiences by the broadcasters well in advance of the live event itself. This paper examines the use of Twitter as a technology for the expression of shared fandom in the context of a major, internationally televised annual media event: the Eurovision Song Contest. It constitutes a highly publicised, highly choreographed media spectacle whose eventual outcomes are unknown ahead of time and attracts a diverse international audience. Our analysis draws on comprehensive datasets for the ‘official’ event hashtags, #eurovision, #esc, and #sbseurovision. Using innovative methods which combine qualitative and quantitative approaches to the analysis of Twitter datasets containing several hundreds of thousands, we examine overall patterns of participation to discover how audiences express their fandom throughout the event. Minute-by-minute tracking of Twitter activity during the live broadcasts enables us to identify the most resonant moments during each event; we also examine the networks of interaction between participants to detect thematically or geographically determined clusters of interaction, and to identify the most visible and influential participants in each network. Such analysis is able to provide a unique insight into the use of Twitter as a technology for fandom and for what in cultural studies research is called ‘audiencing’: the public performance of belonging to the distributed audience for a shared media event. Our work thus contributes to the examination of fandom practices led by Henry Jenkins (2006) and other scholars, and points to Twitter as an important new medium facilitating the connection and communion of such fans.
The backfilled GEI : a cross-capture modality gait feature for frontal and side-view gait recognition
Resumo:
In this paper, we propose a novel direction for gait recognition research by proposing a new capture-modality independent, appearance-based feature which we call the Back-filled Gait Energy Image (BGEI). It can can be constructed from both frontal depth images, as well as the more commonly used side-view silhouettes, allowing the feature to be applied across these two differing capturing systems using the same enrolled database. To evaluate this new feature, a frontally captured depth-based gait dataset was created containing 37 unique subjects, a subset of which also contained sequences captured from the side. The results demonstrate that the BGEI can effectively be used to identify subjects through their gait across these two differing input devices, achieving rank-1 match rate of 100%, in our experiments. We also compare the BGEI against the GEI and GEV in their respective domains, using the CASIA dataset and our depth dataset, showing that it compares favourably against them. The experiments conducted were performed using a sparse representation based classifier with a locally discriminating input feature space, which show significant improvement in performance over other classifiers used in gait recognition literature, achieving state of the art results with the GEI on the CASIA dataset.
Resumo:
This paper describes in detail our Security-Critical Program Analyser (SCPA). SCPA is used to assess the security of a given program based on its design or source code with regard to data flow-based metrics. Furthermore, it allows software developers to generate a UML-like class diagram of their program and annotate its confidential classes, methods and attributes. SCPA is also capable of producing Java source code for the generated design of a given program. This source code can then be compiled and the resulting Java bytecode program can be used by the tool to assess the program's overall security based on our security metrics.
Resumo:
Refactoring is a common approach to producing better quality software. Its impact on many software quality properties, including reusability, maintainability and performance, has been studied and measured extensively. However, its impact on the information security of programs has received relatively little attention. In this work, we assess the impact of a number of the most common code-level refactoring rules on data security, using security metrics that are capable of measuring security from the viewpoint of potential information flow. The metrics are calculated for a given Java program using a static analysis tool we have developed to automatically analyse compiled Java bytecode. We ran our Java code analyser on various programs which were refactored according to each rule. New values of the metrics for the refactored programs then confirmed that the code changes had a measurable effect on information security.
Resumo:
This paper proposes the use of Bayesian approaches with the cross likelihood ratio (CLR) as a criterion for speaker clustering within a speaker diarization system, using eigenvoice modeling techniques. The CLR has previously been shown to be an effective decision criterion for speaker clustering using Gaussian mixture models. Recently, eigenvoice modeling has become an increasingly popular technique, due to its ability to adequately represent a speaker based on sparse training data, as well as to provide an improved capture of differences in speaker characteristics. The integration of eigenvoice modeling into the CLR framework to capitalize on the advantage of both techniques has also been shown to be beneficial for the speaker clustering task. Building on that success, this paper proposes the use of Bayesian methods to compute the conditional probabilities in computing the CLR, thus effectively combining the eigenvoice-CLR framework with the advantages of a Bayesian approach to the diarization problem. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, resulting in a 33.5% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
Substantial research efforts have been expended to deal with the complexity of concurrent systems that is inherent to their analysis, e.g., works that tackle the well-known state space explosion problem. Approaches differ in the classes of properties that they are able to suitably check and this is largely a result of the way they balance the trade-off between analysis time and space employed to describe a concurrent system. One interesting class of properties is concerned with behavioral characteristics. These properties are conveniently expressed in terms of computations, or runs, in concurrent systems. This article introduces the theory of untanglings that exploits a particular representation of a collection of runs in a concurrent system. It is shown that a representative untangling of a bounded concurrent system can be constructed that captures all and only the behavior of the system. Representative untanglings strike a unique balance between time and space, yet provide a single model for the convenient extraction of various behavioral properties. Performance measurements in terms of construction time and size of representative untanglings with respect to the original specifications of concurrent systems, conducted on a collection of models from practice, confirm the scalability of the approach. Finally, this article demonstrates practical benefits of using representative untanglings when checking various behavioral properties of concurrent systems.
Resumo:
As business process management technology matures, organisations acquire more and more business process models. The management of the resulting collections of process models poses real challenges. One of these challenges concerns model retrieval where support should be provided for the formulation and efficient execution of business process model queries. As queries based on only structural information cannot deal with all querying requirements in practice, there should be support for queries that require knowledge of process model semantics. In this paper we formally define a process model query language that is based on semantic relationships between tasks in process models and is independent of any particular process modelling notation.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in buildings and often their behaviour and moment capacities are influenced by lateral-torsional buckling. With increasing usage of cold-formed steel beams their fire safety design has become an important issue. Fire design rules are commonly based on past research on hot-rolled steel beams. Hence a detailed parametric study was undertaken using validated finite element models to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending at uniform elevated temperatures. The moment capacity results were compared with the predictions from the available ambient temperature and fire design rules and suitable recommendations were made. European fire design rules were found to be over-conservative while the ambient temperature design rules could not be used based on single buckling curve. Hence a new design method was proposed that includes the important non-linear stress-strain characteristics observed for cold-formed steels at elevated temperatures. Comparison with numerical moment capacities demonstrated the accuracy of the new design method. This paper presents the details of the parametric study, comparisons with current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams at elevated temperatures.
Resumo:
Current design standards do not provide adequate guidelines for the fire design of cold-formed steel compression members subject to flexural-torsional buckling. Eurocode 3 Part 1.2 (2005) recommends the same fire design guidelines for both hot-rolled and cold-formed steel compression members subject to flexural-torsional buckling although considerable behavioural differences exist between cold-formed and hot-rolled steel members. Past research has recommended the use of ambient temperature cold-formed steel design rules for the fire design of cold-formed steel compression members provided appropriately reduced mechanical properties are used at elevated temperatures. To assess the accuracy of flexural-torsional buckling design rules in both ambient temperature cold-formed steel design and fire design standards, an experimental study of slender cold-formed steel compression members was undertaken at both ambient and elevated temperatures. This paper presents the details of this experimental study, its results, and their comparison with the predictions from the current design rules. It was found that the current ambient temperature design rules are conservative while the fire design rules are overly conservative. Suitable recommendations have been made in relation to the currently available design rules for flexural-torsional buckling including methods of improvement. Most importantly, this paper has addressed the lack of experimental results for slender cold-formed steel columns at elevated temperatures.
Resumo:
The gold standard method for detecting chlamydial infection in domestic and wild animals is PCR, but the technique is not suited to testing animals in the field when a rapid diagnosis is frequently required. The objective of this study was to compare the results of a commercially available enzyme immunoassay test for Chlamydia against a quantitative Chlamydia pecorum-specific PCR performed on swabs collected from the conjunctival sac, nasal cavity and urogenital sinuses of naturally infected koalas (Phascolarctos cinereus). The level of agreement for positive results between the two assays was low (43.2%). The immunoassay detection cut-off was determined as approximately 400 C. pecorum copies, indicating that the test was sufficiently sensitive to be used for the rapid diagnosis of active chlamydial infections.