882 resultados para Reflection principle
Resumo:
Let G be a reductive complex Lie group acting holomorphically on normal Stein spaces X and Y, which are locally G-biholomorphic over a common categorical quotient Q. When is there a global G-biholomorphism X → Y? If the actions of G on X and Y are what we, with justification, call generic, we prove that the obstruction to solving this local-to-global problem is topological and provide sufficient conditions for it to vanish. Our main tool is the equivariant version of Grauert's Oka principle due to Heinzner and Kutzschebauch. We prove that X and Y are G-biholomorphic if X is K-contractible, where K is a maximal compact subgroup of G, or if X and Y are smooth and there is a G-diffeomorphism ψ : X → Y over Q, which is holomorphic when restricted to each fibre of the quotient map X → Q. We prove a similar theorem when ψ is only a G-homeomorphism, but with an assumption about its action on G-finite functions. When G is abelian, we obtain stronger theorems. Our results can be interpreted as instances of the Oka principle for sections of the sheaf of G-biholomorphisms from X to Y over Q. This sheaf can be badly singular, even for a low-dimensional representation of SL2(ℂ). Our work is in part motivated by the linearisation problem for actions on ℂn. It follows from one of our main results that a holomorphic G-action on ℂn, which is locally G-biholomorphic over a common quotient to a generic linear action, is linearisable.
Resumo:
The goal of the AEgIS experiment is to measure the gravitational acceleration of antihydrogen – the simplest atom consisting entirely of antimatter – with the ultimate precision of 1%. We plan to verify the Weak Equivalence Principle (WEP), one of the fundamental laws of nature, with an antimatter beam. The experiment consists of a positron accumulator, an antiproton trap and a Stark accelerator in a solenoidal magnetic field to form and accelerate a pulsed beam of antihydrogen atoms towards a free-fall detector. The antihydrogen beam passes through a moir ́e deflectometer to measure the vertical displacement due to the gravitational force. A position and time sensitive hybrid detector registers the annihilation points of the antihydrogen atoms and their time-of-flight. The detection principle has been successfully tested with antiprotons and a miniature moir ́e deflectometer coupled to a nuclear emulsion detector.
Resumo:
This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.