972 resultados para Random Amplified Polymorphic DNA Technique


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the average inter-crossing number between two random walks and two random polygons in the three-dimensional space. The random walks and polygons in this paper are the so-called equilateral random walks and polygons in which each segment of the walk or polygon is of unit length. We show that the mean average inter-crossing number ICN between two equilateral random walks of the same length n is approximately linear in terms of n and we were able to determine the prefactor of the linear term, which is a = (3 In 2)/(8) approximate to 0.2599. In the case of two random polygons of length n, the mean average inter-crossing number ICN is also linear, but the prefactor of the linear term is different from that of the random walks. These approximations apply when the starting points of the random walks and polygons are of a distance p apart and p is small compared to n. We propose a fitting model that would capture the theoretical asymptotic behaviour of the mean average ICN for large values of p. Our simulation result shows that the model in fact works very well for the entire range of p. We also study the mean ICN between two equilateral random walks and polygons of different lengths. An interesting result is that even if one random walk (polygon) has a fixed length, the mean average ICN between the two random walks (polygons) would still approach infinity if the length of the other random walk (polygon) approached infinity. The data provided by our simulations match our theoretical predictions very well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report 22 new polymorphic microsatellites for the Ivory gull (Pagophila eburnea), and we describe how they can be efficiently co-amplified using multiplexed polymerase chain reactions. In addition, we report DNA concentration, amplification success, rates of genotyping errors and the number of genotyping repetitions required to obtain reliable data with three types of noninvasive or nondestructive samples: shed feathers collected in colonies, feathers plucked from living individuals and buccal swabs. In two populations from Greenland (n=21) and Russia (Severnaya Zemlya Archipelago, n=21), the number of alleles per locus varied between 2 and 17, and expected heterozygosity per population ranged from 0.18 to 0.92. Twenty of the markers conformed to Hardy-Weinberg and linkage equilibrium expectations. Most markers were easily amplified and highly reliable when analysed from buccal swabs and plucked feathers, showing that buccal swabbing is a very efficient approach allowing good quality DNA retrieval. Although DNA amplification success using single shed feathers was generally high, the genotypes obtained from this type of samples were prone to error and thus need to be amplified several times. The set of microsatellite markers described here together with multiplex amplification conditions and genotyping error rates will be useful for population genetic studies of the Ivory gull.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many applications in population genetics, codominant simple sequence repeats (SSRs) may have substantial advantages over dominant anonymous markers such as amplified fragment length polymorphisms (AFLPs). In high polyploids, however, allele dosage of SSRs cannot easily be determined and alleles are not easily attributable to potentially diploidized loci. Here, we argue that SSRs may nonetheless be better than AFLPs for polyploid taxa if they are analyzed as effectively dominant markers because they are more reliable and more precise. We describe the transfer of SSRs developed for diploid Mercurialis huetii to the clonal dioecious M. perennis. Primers were tested on a set of 54 male and female plants from natural decaploid populations. Eight of 65 tested loci produced polymorphic fragments. Binary profiles from 4 different scoring routines were used to define multilocus lineages (MLLs). Allowing for fragment differences within 1 MLL, all analyses revealed the same 14 MLLs without conflicting with merigenet, sex, or plot assignment. For semiautomatic scoring, a combination of as few as 2 of the 4 most polymorphic loci resulted in unambiguous discrimination of clones. Our study demonstrates that microsatellite fingerprinting of polyploid plants is a cost efficient and reliable alternative to AFLPs, not least because fewer loci are required than for diploids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triatoma sordida is a species that transmits Trypanosoma cruzi to humans. In Brazil, T. sordida currently deserves special attention because of its wide distribution, tendency to invade domestic environments and vectorial competence. For the planning and execution of control protocols to be effective against Triatominae, they must consider its population structure. In this context, this study aimed to characterise the genetic variability of T. sordida populations collected in areas with persistent infestations from Minas Gerais, Brazil. Levels of genetic variation and population structure were determined in peridomestic T. sordida by sequencing a polymorphic region of the mitochondrial cytochrome b gene. Low nucleotide and haplotype diversity were observed for all 14 sampled areas; π values ranged from 0.002-0.006. Most obtained haplotypes occurred at low frequencies, and some were exclusive to only one of the studied populations. Interpopulation genetic diversity analysis revealed strong genetic structuring. Furthermore, the genetic variability of Brazilian populations is small compared to that of Argentinean and Bolivian specimens. The possible factors related to the reduced genetic variability and strong genetic structuring obtained for studied populations are discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrophoresis of cells in alkaline medium (comet assay) is a valid technique for quantifying DNA damage in patients with ataxia-telangiectasia and their relatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome associated with mutations in the cardiac ryanodine receptor gene (Ryr2) in the majority of patients. Previous studies of CPVT patients mainly involved probands, so current insight into disease penetrance, expression, genotype-phenotype correlations, and arrhythmic event rates in relatives carrying the Ryr2 mutation is limited. METHODS AND RESULTS: One-hundred sixteen relatives carrying the Ryr2 mutation from 15 families who were identified by cascade screening of the Ryr2 mutation causing CPVT in the proband were clinically characterized, including 61 relatives from 1 family. Fifty-four of 108 antiarrhythmic drug-free relatives (50%) had a CPVT phenotype at the first cardiological examination, including 27 (25%) with nonsustained ventricular tachycardia. Relatives carrying a Ryr2 mutation in the C-terminal channel-forming domain showed an increased odds of nonsustained ventricular tachycardia (odds ratio, 4.1; 95% CI, 1.5-11.5; P=0.007, compared with N-terminal domain) compared with N-terminal domain. Sinus bradycardia was observed in 19% of relatives, whereas other supraventricular dysrhythmias were present in 16%. Ninety-eight (most actively treated) relatives (84%) were followed up for a median of 4.7 years (range, 0.3-19.0 years). During follow-up, 2 asymptomatic relatives experienced exercise-induced syncope. One relative was not being treated, whereas the other was noncompliant. None of the 116 relatives died of CPVT during a 6.7-year follow-up (range, 1.4-20.9 years). CONCLUSIONS: Relatives carrying an Ryr2 mutation show a marked phenotypic diversity. The vast majority do not have signs of supraventricular disease manifestations. Mutation location may be associated with severity of the phenotype. The arrhythmic event rate during follow-up was low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a thermally fluctuating long linear polymeric chain in a solution, the ends, from time to time, approach each other. At such an instance, the chain can be regarded as closed and thus will form a knot or rather a virtual knot. Several earlier studies of random knotting demonstrated that simpler knots show a higher occurrence for shorter random walks than do more complex knots. However, up to now there have been no rules that could be used to predict the optimal length of a random walk, i.e. the length for which a given knot reaches its highest occurrence. Using numerical simulations, we show here that a power law accurately describes the relation between the optimal lengths of random walks leading to the formation of different knots and the previously characterized lengths of ideal knots of a corresponding type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic scientific interest, the accuracy and completeness of this data set is of considerable importance for human health and medicine. Though progress has been made on computational gene identification in terms of both methods and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated intergenic regions. This test set, which should still present an easier problem than real human genomic sequence, mimics the approximately 200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the accuracy of GENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly, although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as GENEWISE, PROCRUSTES, and BLASTX was not affected significantly by the presence of random intergenic sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this decline. However, the specificities of these techniques are still rather good even when the similarity is weak, which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that though gene prediction will improve with every new protein that is discovered and through improvements in the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of every gene in the human genome using purely computational methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One evolutionary explanation for the success of sexual reproduction assumes that sex is an advantage in the coevolutionary arms race between pathogens and hosts. Accordingly, an important criterion in mate choice and maternal selection thereafter could be the allelic specificity at polymorphic loci involved in parasite-host interactions, e.g. the MHC (major histocompatibility complex). The MHC has been found to influence mate choice and selective abortions in mice and humans. However, it could also influence the fertilization process itself, i.e. (i) the oocyte's choice for the fertilizing sperm, and (ii) the outcome of the second meiotic division after the sperm has entered the egg. We tested both hypotheses in an in vitro fertilization experiment with two inbred mouse strains congenic for their MHC. The genotypes of the resulting blastocysts were determined by polymerase chain reaction. We found nonrandom MHC combinations in the blastocysts which may result from both possible choice mechanisms. The outcome changed significantly over time, indicating that a choice for MHC combinations during fertilization may be influenced by one or several external factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed whole genome sequencing in 16 unrelated patients with autosomal recessive retinitis pigmentosa (ARRP), a disease characterized by progressive retinal degeneration and caused by mutations in over 50 genes, in search of pathogenic DNA variants. Eight patients were from North America, whereas eight were Japanese, a population for which ARRP seems to have different genetic drivers. Using a specific workflow, we assessed both the coding and noncoding regions of the human genome, including the evaluation of highly polymorphic SNPs, structural and copy number variations, as well as 69 control genomes sequenced by the same procedures. We detected homozygous or compound heterozygous mutations in 7 genes associated with ARRP (USH2A, RDH12, CNGB1, EYS, PDE6B, DFNB31, and CERKL) in eight patients, three Japanese and five Americans. Fourteen of the 16 mutant alleles identified were previously unknown. Among these, there was a 2.3-kb deletion in USH2A and an inverted duplication of ∼446 kb in EYS, which would have likely escaped conventional screening techniques or exome sequencing. Moreover, in another Japanese patient, we identified a homozygous frameshift (p.L206fs), absent in more than 2,500 chromosomes from ethnically matched controls, in the ciliary gene NEK2, encoding a serine/threonine-protein kinase. Inactivation of this gene in zebrafish induced retinal photoreceptor defects that were rescued by human NEK2 mRNA. In addition to identifying a previously undescribed ARRP gene, our study highlights the importance of rare structural DNA variations in Mendelian diseases and advocates the need for screening approaches that transcend the analysis of the coding sequences of the human genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The qualitative and quantitative losses caused by stored product insects are of great concern, and since there is only a few active ingredients available for their control it is very important to have a frequent insect resistance monitoring. The objective of this research is to evaluate combination of bioassays and molecular marker techniques to detect insecticide resistance in stored product beetles. The Coleoptera species used for the tests were Sitophilus oryzae (L.) (Curculionidae), Rhyzopertha dominica (F.) (Bostrichidae) and Oryzaephilus surinamensis (L.) (Silvanidae). For the bioassays it was used the impregnated filter paper technique, applying 1 mL of deltamethrin (K-Obiol 25 CE TM) using four concentrations and five replicates, including a control with solvent only. Ten adults of each species were liberated separately on each dish. The mortality was evaluated after 24 h and resistance determined by probit analysis. The samples used for the PCR-RAPD were either in vivo or preserved in 70% ethanol, kept in -18°C freezer. After extraction, quantification and DNA quality analysis, the 25 µL samples had the DNA amplified and tested with six primers. The bioassays showed a crescent mortality proportional to insecticide concentration. The resistance factor for R. dominica, S. zeamais and S. oryzae were: 2,2; 3,2 and 9,2, respectively, compared to the susceptible populations of each species. The PCR-RAPD analysis revealed bands which indicate inter and intraspecific variability in the populations, but it was not possible to correlate them to resistance. The association of bioassay and PCR-RAPD represents a precise and valuable tool for resistance management of stored product insects, but more populations and primers should be tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a general technique to develop first and second order closed-form approximation formulas for short-time options withrandom strikes. Our method is based on Malliavin calculus techniques andallows us to obtain simple closed-form approximation formulas dependingon the derivative operator. The numerical analysis shows that these formulas are extremely accurate and improve some previous approaches ontwo-assets and three-assets spread options as Kirk's formula or the decomposition mehod presented in Alòs, Eydeland and Laurence (2011).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed numerical simulations of DNA chains to understand how local geometry of juxtaposed segments in knotted DNA molecules can guide type II DNA topoisomerases to perform very efficient relaxation of DNA knots. We investigated how the various parameters defining the geometry of inter-segmental juxtapositions at sites of inter-segmental passage reactions mediated by type II DNA topoisomerases can affect the topological consequences of these reactions. We confirmed the hypothesis that by recognizing specific geometry of juxtaposed DNA segments in knotted DNA molecules, type II DNA topoisomerases can maintain the steady-state knotting level below the topological equilibrium. In addition, we revealed that a preference for a particular geometry of juxtaposed segments as sites of strand-passage reaction enables type II DNA topoisomerases to select the most efficient pathway of relaxation of complex DNA knots. The analysis of the best selection criteria for efficient relaxation of complex knots revealed that local structures in random configurations of a given knot type statistically behave as analogous local structures in ideal geometric configurations of the corresponding knot type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 20 amino acid residue peptides derived from RecA loop L2 have been shown to be the pairing domain of RecA. The peptides bind to ss- and dsDNA, unstack ssDNA, and pair the ssDNA to its homologous target in a duplex DNA. As shown by circular dichroism, upon binding to DNA the disordered peptides adopt a beta-structure conformation. Here we show that the conformational change of the peptide from random coil to beta-structure is important in binding ss- and dsDNA. The beta-structure in the DNA pairing peptides can be induced by many environmental conditions such as high pH, high concentration, and non-micellar sodium dodecyl sulfate (6 mM). This behavior indicates an intrinsic property of these peptides to form a beta-structure. A beta-structure model for the loop L2 of RecA protein when bound to DNA is thus proposed. The fact that aromatic residues at the central position 203 strongly modulate the peptide binding to DNA and subsequent biochemical activities can be accounted for by the direct effect of the aromatic amino acids on the peptide conformational change. The DNA-pairing domain of RecA visualized by electron microscopy self-assembles into a filamentous structure like RecA. The relevance of such a peptide filamentous structure to the structure of RecA when bound to DNA is discussed.